Laboratory experience in Iraq with cold asphalt concrete mixtures is very limited. The design and use of cold mixed asphalt concrete had no technical requirements. In this study, two asphalt concrete mixtures used for the base course were prepared in the laboratory using conventional cold-mixing techniques to test cold asphalt mixture (CAM) against aging and moisture susceptibility. Cold asphalt mixtures specimens have been prepared in the lab with cutback and emulsion binders, different fillers, and curing times. Based on the Marshal test result, the cutback proportion was selected with the filler, also based on the Marshal test emulsion. The first mixture was medium setting cationic emulsion (MSCE) as a binder, hydrated lime, and ordinary portland cement as a filler (7.95% MSCE + 2%HL + 3% OPC). The second mixture used was medium curing cutback (MC-250) as a binder and ordinary portland cement as a filler (5.18% MC 250 + 5% OPC). The indirect tensile strength (ITS) of the samples was measured at 25 ° C. It was found that the cold mix with the MSCE binder had a high ITS value relative to the cold mix with the cutback asphalt binder (MC-250). The dry mixture of MSCE ITS was approximately 3.77 times the dry mixture of MC-250. The MSCE wet mix was about 4.2 times the wet MC-250 mix. Tensile strength ratio result (TSR %) for the MSCE binder mix and the cutback MC-250 binder mix showed that the MSCE mix has a reasonable moisture resistance (77% ) compared to the MC-250 mix (69.2 %). The aging test and aging ratio result showed that asphalt binder oxidation has a significant effect on age-related pavement degradation as it changes the time-temperature relationship depending on the viscoelastic properties of the asphalt binder. The result clearly showed that the MSCE binder mix had a high resistance to aging (440 Kpa) compared to the cutback (MC-250) binder mix (110 Kpa). In contrast, the MSCE aging ratio (90 %) was higher than the MC-250 ratio (85 %).
The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MorePulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show MoreThe civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results
... Show MoreThis research studies the influence of water source on the compressive strength of high strength concrete. Four types of water source were adopted in both mixing and curing process these are river, tap, well and drainage water (all from Iraq-Diyala governorate). Chemical analysis was carried out for all types of the used water including (pH, total dissolved solids (TDS), Turbidity, chloride, total suspended solid (TSS), and sulfates). Depending on the chemical analysis results, it was found that for all adopted sources the chemical compositions was within the ASTM C 1602/C 1602M-04 limits and can be satisfactorily used in concrete mixtures. Mixture of high strength concrete for compressive strength of (60 MPa) was designed and checked using
... Show MoreThe development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreExpansive soil is one of the most serious problems that face engineers during the execution of any infrastructure projects. Soil stabilization using chemical admixture is one of the most traditional and widespread methods of soil improvement. Nevertheless, soil improvement on site is one of the most economical solutions for many engineering applications. Using construction and demolishing waste in soil stabilization is still under research., The aim of this study is to identify the effect of using concrete demolishing waste (CDW) in soil stabilization. Serious tests were conducted to investigate the changes in the geotechnical properties of the natural soil stabilized with CDW. From the results, it is concluded that the
... Show MoreThe main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MoreA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a signifcantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p]=0.009; corrected p [pc]=0.027) and was associated with a lower risk of HBV infection (odds ratio [OR]=0.49; 95% confdence interval [CI]=0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR=0.25; 95% CI=0.08–0.81; p=0.02) and GG (10.0 vs. 16.7; OR=0.25; 95% CI=0.07–0.91; p=0.036), but the pc value was not signifcant (0.12 and 0.126, respec‑ tively). Serum IL35 levels showed signifcant difere
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show More