This paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect of enhancing the relative stability of the closed-loop system by eliminating the oscillation in its transient part but at the expense of greater rise time. However, for some applications, long rise time may be an allowable price to get rid of undesired oscillation. To demonstrate the proposed hybrid controller's performance numerically, a new performance index, designated by Integral Reciprocal Time Absolute Error (IRTAE), is defined as a figure to measure the oscillation of the response in its transient part. The proposed controller enhances this performance index by 0.6771%. Although the relative enhancement of the performance index is small, it contributes to eliminating the oscillation of the response in its transient part. Simulation results are performed on the MATLAB/Simulink environment.
In this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .
Rotating fan shaft system was investigated experimentally and theoretically to study its dynamic performance. The type of oil used for the bearing was taken in consideration during the experimental program .Three types of oil were used, SAE 40, SAE 50 and degraded oil. During the experiments, the fan blades stagger angle was changed through angles (20˚, 30˚, 40˚, and 50˚). The shaft rotational speed also changed in the range of (0-3000 rpm). All these parameters have investigated for two cases (balanced and unbalanced fan). The performance parameters of the fan were found experimentally by measuring the fan, volume flow rate, Reynolds and Strouhal numbers, efficiency and pressure head. Analytical part was also represented to prepare
... Show MoreThe aim was to design a MATLAB program to calculate the phreatic surface of the multi-well system and present the graphical shape of the water table drawdown induced by water extraction. Dupuit’s assumption is the base for representing the dewatering curve. The program will offer the volume of water to be extracted, the total number of wells, and the spacing between them as well as the expected settlement of soil surrounding the dewatering foundation pit. The dewatering well arrangement is required in execution works, and it needs more attention due to the settlement produced from increasing effective stress.
Conclusion The observation of the phenomenon of structural evolution of the international system and its instability on a particular situation, by its transition from unipolar to polarity to bipolarism and then to unilateralism in the early 1990s led by the United States, and to the present moment, To say that the structure by which the hierarchy of superpowers or the regime is directed in terms of its various capacities that qualify it, and with the consent of the rest of the States directing the regime to lead and lead the world's first place, has no direct relation to the stability of this system, I hope other more influential in its stability. The structure of the new international order will be completely different in terms of the r
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le
... Show MoreThe principle in the language is that each word has one meaning. This is because the purpose of language development is for understanding, understanding, and communication between people. The language is sounds with which each people expresses their Arabic language did not stop at this point, but rather needed another next stage or to convey additional features or characteristics that would qualify it. To be the language of the Qur’an and revelation, and capable of carrying this heavy burden.
In this work a Nd:YVO4 thin disc laser setup is designed and fabricated. The disk laser system
is designed to be compact. The laser crystal was pumped by a 808 nm diode laser. The effect of input
current and pulse frequency on the output energy at pulse operation mode, and the effect of the input
current on the output power at CW mode operation are tested. At the pulsed mode, the output energy
increased linearly with the input current and decreased with pulse frequency. The threshold current
increased with increasing pulse frequency increasing. The maximum output energy from the thin disc
laser was 0.98 μJ at 1.3 kHz frequency, with 0.49A. A minimum threshold current for CW mode of
operation. The maximum outpu
The paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.