Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydraulic soil models was calculated and was compared with the model of Brooks and Corey, 1964. There was good agreement compared with different models. The Root Mean Square Error (RMSE) was (0.23) cm, while the relative error (- 1%) and (1) for modeling efficiency (EF) for wetted radius, but wetted depth was RMSE (0.99) cm, and the relative error was (4.5%), and EF was (1).
The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreIn the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each M
... Show MoreIn this paper, we model the spread of coronavirus (COVID -19) by introducing stochasticity into the deterministic differential equation susceptible -infected-recovered (SIR model). The stochastic SIR dynamics are expressed using Itô's formula. We then prove that this stochastic SIR has a unique global positive solution I(t).The main aim of this article is to study the spread of coronavirus COVID-19 in Iraq from 13/8/2020 to 13/9/2020. Our results provide a new insight into this issue, showing that the introduction of stochastic noise into the deterministic model for the spread of COVID-19 can cause the disease to die out, in scenarios where deterministic models predict disease persistence. These results were also clearly ill
... Show MoreIn this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
The method of solving volterra integral equation by using numerical solution is a simple operation but to require many memory space to compute and save the operation. The importance of this equation appeares new direction to solve the equation by using new methods to avoid obstacles. One of these methods employ neural network for obtaining the solution.
This paper presents a proposed method by using cascade-forward neural network to simulate volterra integral equations solutions. This method depends on training cascade-forward neural network by inputs which represent the mean of volterra integral equations solutions, the target of cascade-forward neural network is to get the desired output of this network. Cascade-forward neural
... Show MoreIn this paper, we conduct some qualitative analysis that involves the global asymptotic stability (GAS) of the Neutral Differential Equation (NDE) with variable delay, by using Banach contraction mapping theorem, to give some necessary conditions to achieve the GAS of the zero solution.
In this article, we introduce a two-component generalization for a new generalization type of the short pulse equation was recently found by Hone and his collaborators. The coupled of nonlinear equations is analyzed from the viewpoint of Lie’s method of a continuous group of point transformations. Our results show the symmetries that the system of nonlinear equations can admit, as well as the admitting of the three-dimensional Lie algebra. Moreover, the Lie brackets for the independent vectors field are presented. Similarity reduction for the system is also discussed.
This paper presents a new numerical method for the solution of ordinary differential equations (ODE). The linear second-order equations considered herein are solved using operational matrices of Wang-Ball Polynomials. By the improvement of the operational matrix, the singularity of the ODE is removed, hence ensuring that a solution is obtained. In order to show the employability of the method, several problems were considered. The results indicate that the method is suitable to obtain accurate solutions.
The equation of Kepler is used to solve different problems associated with celestial mechanics and the dynamics of the orbit. It is an exact explanation for the movement of any two bodies in space under the effect of gravity. This equation represents the body in space in terms of polar coordinates; thus, it can also specify the time required for the body to complete its period along the orbit around another body. This paper is a review for previously published papers related to solve Kepler’s equation and eccentric anomaly. It aims to collect and assess changed iterative initial values for eccentric anomaly for forty previous years. Those initial values are tested to select the finest one based on the number of iterations, as well as the
... Show MoreAn evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to
... Show More