Thin-walled members are increasingly used in structural applications, especially in light structures like in constructions and aircraft structures because of their high strength-to-weight ratio. Perforations are often made on these structures for reducing weight and to facilitate the services and maintenance works like in aircraft wing ribs. This type of structures suffers from buckling phenomena due to its dimensions, and this suffering increases with the presence of holes in it. This study investigated experimentally and numerically the buckling behavior of aluminum alloy 6061-O thin-walled lipped channel beam with specific holes subjected to compression load. A nonlinear finite elements analysis was used to obtain the buckling loads of the beams. Experimental tests were done to validate the finite element results. Three factors namely; shape of holes, opening ratio D/Do and the spacing ratio S/Do were chosen to study their effects on the buckling strength of the channel beams. Finite elements results were obtained by using Taguchi method to identify the best combination of the three parameters for optimum critical buckling load, whereas determining the contribution of each parameter on buckling strength was implemented by using the analysis of variance technique (ANOVA) method. Results showed that the combination of parameters that gives the best buckling strength is the hexagonal hole shape, D/Do=1.7 and S/Do= 1.3 and the opening ratio (or size of holes) is the most effective on buckling behavior.
A hydrophilic interaction chromatography has been investigated to separate 2-deoxycytidine chosen for nucleoside. A small molecule with specific features for human serum samples was 2-deoxycytidine tested. 2-deoxycytidine has been applied to self-made stationary hydrophilic phases (ZIC1 and ZIC5). The deoxycytidine (dCD) retention was investigated with varying concentrations of sodium acetate buffer, acetonitrile%, and pH. The results confirmed the hydrophilicity of 2-deoxycytidine. The exchanger retention mechanism was studied taking into account 2-deoxycytidine used for describing the interaction of hydrophilic and cation. For both ZIC1 and ZIC5 exchangers, we described and discussed the influence of chromatographic conditions (co
... Show MoreThe study of the dynamic behavior of packed distillation column was studied by frequency response analysis using Matlab program. A packed distillation column (80 mm diameter) (2000 mm height) filled with glass packing (Raschig Rings 10mm), packing height (1500 mm) has been modified for separation of methanol-water mixture (60 vol%). The column dynamic behavior was studied experimentally under different step changes in, feed rate (±30%), reflux rate (±22%), and reboiler heat duty (±150%), the top and bottom concentration of methanol were measured. A frequency response analysis for the above step response was carried out using Bode diagram, the log modulus and the phase angle were used to analyze the process model. A Matlab progra
... Show MorePolymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room
... Show MoreIn this research, a numerical simulation was conducted to study the behavior of the scouring pattern and the effect of spacing between bridge piers at specified hydraulic conditions such as velocity, depth of flow, and the sediment effective diameter. Moreover, the cross-section shape of piers and their effect on the scouring depth around bridge piers was studied, using Computational Fluid Dynamics (CFD), ANSYS (Fluent) software. A comparison of the simulation results obtained with previous laboratory investigations was done to verify the validity of the numerical model. Generally, the scour pattern using the CFD software gave good agreement with the experimental study. A reversed pro
Nonlinear diffraction patterns can be obtained by focusing a laser beam through a thin slice of the material. Here, we investigated experimentally the formation of the far field nonlinear diffraction patterns of cw laser beam at 532 nm passing through a quartz cuvette containing multi-wall carbon nanotubes (MWCNT's) suspended in acetone and in DI water at concentrations of 0.030.wt.%, 0.045 wt.%, 0.060 wt.%, and 0.075 wt.%. Our results show that increasing the concentration of both types of suspensions (MWCNTs in acetone and MWCNTs DI water) led to increase in the number of pattern rings which indicates an increase in their nonlinear refractive indices. Moreover, MWCNTs DI water suspension at a concentration of 0.075 wt. % was more effic
... Show MoreCuInSe2(CIS) thin films have been prepared by use vacuum thermal evaporation technique, of thickness750 nm with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant) by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can make to control it are wide applications as an optoelectronic devices and photovoltaic applications.
PbxCd1-xSe compound with different Pb percentage (i.e. X=0,
0.025, 0.050, 0.075, and 0.1) were prepared successfully. Thin films
were deposited by thermal evaporation on glass substrates at film
thickness (126) nm. The optical measurements indicated that
PbxCd1-xSe films have direct optical energy gap. The value of the
energy gap decreases with the increase of Pb content from 1.78 eV to
1.49 eV.