Cohesive soils present difficulties in construction projects because it usually contains expansive clay minerals. However, the engineering properties of cohesive soils can be stabilized by using various techniques. The research aims to elaborate on the influences of using hydrated lime on the consistency, compaction, and shear strength properties of clayey soil samples from Sulaimnai city, northern Iraq. The proportions of added hydrated lime are 0%, 2.5%, 5%, 7.5% and 10% to the natural soil sample. The results yielded considerable effects of hydrated lime on the engineering properties of the treated soil sample and enhancement its strength. The soil's liquid limit, plasticity index, and optimum moisture content were decreased with the increase of hydrated lime percent. The soil's other geotechnical properties such as plastic limit, maximum dry density, and unconfined compressive strength were increased with the hydrated lime content increase. The oedometer test results produced a notable decrease in the compressibility characteristics of the lime-treated soil sample. Hence, hydrated lime is successfully contributed and can be considered as an effective material to improve the strength, compressibility, and consistency properties of the cohesive soils in Sulaimani city.
Screw piles are widely used in supporting structures subjected to pullout forces, such as power towers and offshore structures, and this research investigates their performance in gypseous soil of medium relative density. The bearing capacity and displacement of a single screw pile model inserted in gypseous soil with various diameters (D = 20, 30, and 40) mm are examined in this study. The soil used in the testing had a gypsum content of 40% and the bedding soil had a relative density of 40%. To simulate the pullout testing in the lab, a physical model was manufactured with specific dimensions. Three steel screw piles with helix diameters of 20, 30, and 40 mm are used, with a total length of 500 mm. The helix is continuous over the
... Show MoreThe construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips we
... Show MoreAs asphalt concrete wearing course (ACWC) is the top layer in the pavement structure, the material should be able to sustain stresses caused by direct traffic loading. The objective of this study is to evaluate the influence of aggregate gradation and mineral filler type on Marshall Properties. A detailed laboratory study is carried out by preparing asphalt mixtures specimens using locally available materials including asphalt binder (40-50) penetration grade, two types of aggregate gradation representing SCRB and ROAD NOTE 31 specifications and two types of mineral filler including limestone dust and coal fly ash. Four types of mixtures were prepared and tested. The first type included SCRB specification and
... Show MoreIn the present study, composites were prepared by Hand lay-up molding and investigated. The composites constituents were epoxy resin as the matrix, 6% volume fractions of Glass Fibers (G.F) as reinforcement and 3%, 6% of industrial powder (Calcium Carbonate CaCO3, Potassium Carbonate K2CO3 and Sodium Carbonate Na2CO3) as filler. Density, water absorption, hardness test, flexural strength, shear stress measurements and tests were conducted to reveal their values for each type of composite material. The results showed that the non – reinforced epoxy have lower properties than composites material. Measured density results had show an incremental increase with volume fraction increase
... Show MoreIn the current study, CuAl0.7In0.3Te2 thin films with 400 nm thickness were deposited on glass substrates using thermal evaporation technique. The films were annealed at various annealing temperatures of (473,573,673 and 773) K. Furthermore, the films were characterized by X-ray Diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and Ultra violet-visible (UV–vis). XRD patterns confirm that the films exhibit chalcopyrite structure and the predominant diffraction peak is oriented at (112). The grain size and surface roughness of the annealed films have been reported. Optical properties for the synthesized films including, absorbance, transmittance, dielectric constant, and refr
... Show MoreThe slurry infiltrated fiber concrete (SIFCON) is nowadays considered a special type of high fiber content concrete; it is high strength and high performance material. This paper investigates the effect of spread steel fiber into the slurry mortar on some properties of SIFCON. According to fiber distribution, two sets were used in this investigation. The first set consisted of randomly distributing fibers inside the slurry. The second set was by placing the fibers in an orderly manner inside the slurry. Crimped steel fibers with an aspect ratio of (60) were used. Two different volume fractions percentage of (7% and 9%) by volume of mold were used in both sets for this study. Also, a w/c ratio of (0.35) and superplasticiz
... Show More