Preferred Language
Articles
/
joe-1189
Performance of 2- Link Robot by utilizing Adaptive Sliding Mode Controller
...Show More Authors

The Sliding Mode Control (SMC) has been among powerful control techniques increasingly. Much attention is paid to both theoretical and practical aspects of disciplines due to their distinctive characteristics such as insensitivity to bounded matched uncertainties, reduction of the order of sliding equations of motion, decoupling mechanical systems design. In the current study, two-link robot performance in the Classical SMC is enhanced via Adaptive Sliding Mode Controller (ASMC) despite uncertainty, external disturbance, and coulomb friction. The key idea is abstracted as follows: switching gains are depressed to the low allowable values, resulting in decreased chattering motion and control's efforts of the two-link robot system. Un-known uncertainty bounded and reducing switching gains can be considered major advantages of ASMC leading to outperform ASMC upon CSMC. Simulink MATLAB 2019a was used to obtain the simulation outcomes. The outcomes have shown that both methodologies had good tracking performance to the desired position and made the system asymptotically stable through the steady-state errors investigate approaching zero. ASMC is better than CSMC illustrated by minimizing gains values, control efforts, and chattering for each link.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jul 01 2020
Journal Name
Journal Of Engineering
Bat Algorithm Based an Adaptive PID Controller Design for Buck Converter Model
...Show More Authors

The aim of this paper is to design a PID controller based on an on-line tuning bat optimization algorithm for the step-down DC/DC buck converter system which is used in the battery operation of the mobile applications. In this paper, the bat optimization algorithm has been utilized to obtain the optimal parameters of the PID controller as a simple and fast on-line tuning technique to get the best control action for the system. The simulation results using (Matlab Package) show the robustness and the effectiveness of the proposed control system in terms of obtaining a suitable voltage control action as a smooth and unsaturated state of the buck converter input voltage of ( ) volt that will stabilize the buck converter sys

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (5)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Tue Dec 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Design of an Adaptive PID Neural Controller for Continuous Stirred Tank Reactor based on Particle Swarm Optimization
...Show More Authors

 A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.

View Publication Preview PDF
Publication Date
Wed Jul 31 2019
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Optimization Algorithms Based on Path Planning and Neural Controller for Mobile Robot
...Show More Authors

In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Advances In Engineering Software
System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm
...Show More Authors

View Publication
Scopus (50)
Crossref (43)
Scopus Clarivate Crossref
Publication Date
Sun Dec 30 2018
Journal Name
Journal Of Engineering
A Cognition Path Planning with a Nonlinear Controller Design for Wheeled Mobile Robot Based on an Intelligent Algorithm
...Show More Authors

This paper presents a cognition path planning with control algorithm design for a nonholonomic wheeled mobile robot based on Particle Swarm Optimization (PSO) algorithm. The aim of this work is to propose the circular roadmap (CRM) method to plan and generate optimal path with free navigation as well as to propose a nonlinear MIMO-PID-MENN controller in order to track the wheeled mobile robot on the reference path. The PSO is used to find an online tune the control parameters of the proposed controller to get the best torques actions for the wheeled mobile robot. The numerical simulation results based on the Matlab package show that the proposed structure has a precise and highly accurate distance of the generated refere

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue May 28 2019
Journal Name
Al-khwarizmi Engineering Journal
Heuristic D* Algorithm Based on Particle Swarm Optimization for Path Planning of Two-Link Robot Arm in Dynamic Environment
...Show More Authors

 Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved.  In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO)

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Tue Dec 12 2017
Journal Name
Al-khwarizmi Engineering Journal
Model Reference Adaptive Control based on a Self-Recurrent Wavelet Neural Network Utilizing Micro Artificial Immune Systems
...Show More Authors

Abstract 

This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
A Comparative Study of Various Intelligent Algorithms Based Nonlinear PID Neural Trajectory Tracking Controller for the Differential Wheeled Mobile Robot Model
...Show More Authors

This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Aug 02 2022
Journal Name
Karbala International Journal Of Modern Science
Performance Simulation for Adaptive Optics Technique Using OOMAO Toolbox
...Show More Authors

The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process

View Publication
Scopus (6)
Crossref (1)
Scopus Crossref