Water/oil emulsion is considered as the most refractory mixture to separate because of the interference of the two immiscible liquids, water and oil. This research presents a study of dewatering of water / kerosene emulsion using hydrocyclone. The effects of factors such as: feed flow rate (3, 5, 7, 9, and 11 L/min), inlet water concentration of the emulsion (5%, 7.5%, 10%, 12.5%, and 15% by volume), and split ratio (0.1, 0.3, 0.5, 0.7, and 0.9) on the separation efficiency and pressure drop were studied. Dimensional analysis using Pi theorem was applied for the first time to model the hydrocyclone based on the experimental data. It was shown that the maximum separation efficiency; at split ratio 0.1, was 94.3% at 10% concentration and 11 L/min flow rate; at 0.3 split ratio, was 70.8% at 10% concentration and 11 L/min flow rate; at split ratio 0.5, was 82.1% at 12.5% concentration and 11 L/min flow rate; at split ratio 0.7, was 70% at 11 L/min, for 5%, 7.5%, and 12.5% concentrations; at 0.9 split ratio was 96.8% at 11 L/min flow rate and 5% concentration. The maximum separation obtained within these ranges of variables was 96.8% at 0.9 split ratio, 11 L/min flow rate and 5% concentration. The maximum pressure drop recorded was 3.6 bar at split ratio 0.1 and 11 L/min flow rate for all concentrations. The correlations obtained by the dimensional analysis were; at split ratio 0.1, at split ratio 0.3, at split ratio 0.5, at split ratio 0.7, and at split ratio 0.9. As an average for all the studied variables.
In this paper, An application of non-additive measures for re-evaluating the degree of importance of some student failure reasons has been discussed. We apply non-additive fuzzy integral model (Sugeno, Shilkret and Choquet) integrals for some expected factors which effect student examination performance for different students' cases.
This study investigates the effects of Al-Doura oil refinery effluent, in Baghdad city, on the water quality of the Tigris River using the Canadian Water Quality Index (CCME WQI) and Rivers Maintaining System (1967). Water samples were collected monthly from Tigris River at three stations, which are Al-Muthanna Bridge (upstream), Al-Doura Refinery (point source), and Al–Zafaraniya city (downstream) from October 2020 to April 2021. Fourteen water quality parameters were studied, namely pH (6.50-8.10), Water Temperature (WT) (5.00-27.00 °C), Electrical Conductivity (EC) (877.00-1192.00 μs/cm), Dissolved Oxygen (DO) (5.03-7.57 mg/L), Biological Oxygen demand (BOD) (0.53-2.23 mg/L), Total Dissolved S
In this study, the circulating fluidized bed was used to remove the Tetracycline from wastewater utilizing a pistachio shell coated with ZnO nanoparticles. Several parameters including, Tetracycline solution flowrate, initial static bed height, Tetracycline initial concentration and airflow rate were systematically examined to show their effect on the breakthrough curve and the required time to reach the adsorption capacity and thus draw the fully saturated curve of the adsorbent. Results showed that using ZnO nanoparticles will increase the adsorbent surface area and pores and as a result the adsorption increased, also the required time for adsorbent saturation increased and thus the removal efficiency may be achieved at mi
... Show MoreThe thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
In the present work theoretical relations are derived for the efficiency evaluation for the generation of the third and the fourth harmonics u$ing crystal cascading configuration. These relations can be applied to a wide class of nonlinear optical materials. Calculations are made for beta barium borate (BBO) crystal with ruby laser /.=694.3 nm . The case study involves producing the third harmonics at X. =231.4 nm of the fundamental beam. The formula of efficiency involves many parameters, which can be changed to enhance the efficiency. The results showed that the behavior of the efficiency is not linear with the crystal length. It is found that the efficiency increases when the input power increases. 'I'he walk-off length is calculated for
... Show MoreIn this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T