The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples were taken from the Al Qadisiyiah water treatment plant. The treatment set up was in a batch mode; two parallel plates of aluminum were used as electrodes. Experimental results showed that the maximum removal efficiency of 96% for turbidity and 97% for TSS were obtained at operating time 60 minutes, voltage 30 V, and electrode spacing 1.7cm. Two models for predicting removal efficiency obtained, the first model was for turbidity with a correction factor of 94.7%, and the second one was for the TSS with a correction factor of 94.85%.
The present article discusses the synthesis of tetradentate Schiff base complexes formed by the condensation reaction of 2-hydroxy benzaldehyde and phthalohydrazide. The ligand (LH2) was detected using FT-IR spectra, 1H, 13C-NMR, UV-Vis spectroscopy, elemental microanalysis CHN, and mass spectrometry. The obtained solid complexes have been assessed using physicochemical and spectroscopic techniques, including UV-Vis, FT-IR, nuclear magnetic resonance (1H-NMR, 13C-NMR), mass spectrometry, thermal gravimetric analysis (TGA), and atomic absorption, in addition to complex conductivity and magnetic moment measurements. The infrared results demonstrated that ligands functioning as tetradentate ligands are chelated to metal ions via the ph
... Show MoreThis research involves the synthesis of some sulphanyl benzimidazole derivatives (Ia-c), which were prepared from reaction of 2-mercaptobenzimidazole substituted benzyl halide, and structures were identified by spectral methods[FTIR, 1H-NMR and 13C-NMR].These compounds were investigated as corrosion inhibitors for carbon steel in 1M H2SO4 solution using weight loss, potentiostatic polarization methods; obtained results showed that the sulphanyl benzimidazole derivatives retard both cathodic and anodic reactions in acidic media, by virtue of adsorption on the carbon steel surface. This adsorption obeyed Langmuir’s adsorption isotherm. The inhibition efficiency of (Ia-c) ranging between (65-92) %. By using different Ib derivative conc
... Show Moreمن الاهمية دراسة التاريخ كونه يمدنا بحلول للمشكلات المعاصرة في ضوء خبرات الماضي، ودراسة سلبيات وايجابيات هذه الحلول، وانطلاقا من مبدأ أن ذوي الإعاقة البصرية طاقة بشرية لابد من استثمارها بما يخدم تقدم وازدهار المجتمع، فمن الأهمية تسليط الضوء على هذه الفئة والإسهام بنقل صورة مشرفة عنها، قد تكون دافعا للآخرين ممن اوقفهم انطفاء شعاع النور والبصيرة عن اكمال حياتهم لشرارة امل تعيد لهم شغفهم في الحياة، وته
... Show MoreRKASFH Ghanim, Ibn Al -Haitham Journal for pure and applied science, 2017
Semiconductor-based photocatalytic processes are widely applied as ecofriendly technology for degrading organic pollutants. Establishing photocatalytic heterojunctions with Z-type photocarriers transfer pathways is projected to be a superb strategy to enhance photocatalytic behavior. In this paper, novel and stable (0D/2D) heterojunctions of CoS-embedded boron-doped g-C3N4 (CoS/BCN) with a high rate of charges transfer/separation were assembled for degradation of malachite green dye (MG). The CoS/BCN photocatalyst achieves a photodegradation efficiency of 96.9 % within 1 h of LED illumination, which is 2.5 and 1.4-fold enhancement compared with bare g-C3N4 and BCN, respectively. Besides, the results of species-trapping trials exhibited that
... Show More