The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples were taken from the Al Qadisiyiah water treatment plant. The treatment set up was in a batch mode; two parallel plates of aluminum were used as electrodes. Experimental results showed that the maximum removal efficiency of 96% for turbidity and 97% for TSS were obtained at operating time 60 minutes, voltage 30 V, and electrode spacing 1.7cm. Two models for predicting removal efficiency obtained, the first model was for turbidity with a correction factor of 94.7%, and the second one was for the TSS with a correction factor of 94.85%.
Five levels of Zn-EDTA fertilizer and foliar application of boron were used to study the local rice response through studying of some vegetative and reproductive growth characters, by conducting two field experiments at Kanipanka Agricultural Research Station during the summer season of 2004 by using RCBD with three replications. Significant differences were found in studied characters, there were increase in the number of days from seeding to 50% flowering (94.330-96.233) days, from 50% flowering to physiological maturity (37.50-38.28) days, plant height (82.50-91.423) cm and LAI (5.441-7.525). Reproductive characters such as number of grains panicle-1 (74.11-85.88), number of panicles m-2 (321.00-426.083), biological yield (8166.166-11082
... Show MoreThis paper studies the effect of contact areas on the transient response of mechanical structures. Precisely, it investigates replacing the ordinary beam of a structure by two beams of half the thickness, which are joined by bolts. The response of these beams is controlled by adjusting the tightening of the connecting bolts and hence changing the magnitude of the induced frictional force between the two beams which affect the beams damping capacity. A cantilever of two beams joined together by bolts has been investigated numerically and experimentally. The numerical analysis was performed using ANSYS-Workbench version 17.2. A good agreement between the numerical and experimental results has been obtained. In general, results s
... Show MoreThis study was conducted in a lath house, Dept of Hort. and Landscape, College of Agricultural Engineering Sciences, Univ. During the 2021 growing season, Baghdad will investigate the influence of organic and Biological fertilizers on three Citrus rootstocks' growth and leaf mineral content. The first factor is the addition of liquid organic fertilizers Vit-Org (O) at three levels without addition (O0), soil addition at 10 ml.L-1 (O10) and soil addition at 20 ml.L-1 (O20). The second factor is the addition of nitrogen-fixing bacteria without addition (N1), add 30 ml.Transplant-1 of Azotobacter chroococcum (N2) and add 30 ml.Transplant-1 of Azospirillum brasilemse (N3). The third factor is three citrus rootstocks: sour orange (R1), R
... Show MoreA field experiment was carried out in the Field Crops Department at the College of Agricultural Engineering Sciences-University of Baghdad for the autumn season 2023, with the goal of evaluating and performance of various genotypes of maize under different sowing dates, and the study included (MgW16, Nad H965, Nad it 706, Nad it 2525) with four single crosses (2 × 1), (3 × 1), (4 ×1), (3× 2) and four three way crosses (3×2 × 1),(4×2 × 1), (4×3 × 1), (Nad it 25 × 3 × 1) and four synthetic varities (Nad H25 × 3 ×2 ×1), (Baghdad), Al-Ezz and Tigris. The genotypes are planted with three agricultural dates (10, 20 and 30 July) and are compared according to the randomized com
Risks are confronting the foundations of buildings and structures when exposed to earthquakes which leads to high displacements that may cause the failure of the structures. This research elaborates numerically the effect of the earthquake on the vertical and lateral displacement of footing resting on the soil. The thickness of the footing and depth of soil layer below the footing was taken as (0.5, 1.0, and 2.0 m) and (10, 20 and 40m), respectively. The stiffness ratio of soil to footing was also elaborated at 0.68, 0.8, 1.0, and 1.7. The results showed an increase in the verticle displacement of footing as the duration of the earthquake increases. The increase of soil layer thickness below the footing leads to a reduction in the vertical
... Show MoreIn engineering, the ground in seismically active places may be subjected to static and seismic stresses. To avoid bearing capacity collapse, increasing the system's dynamic rigidity, and/or reducing dynamic fluctuations, it may be required to employ deep foundations instead of shallow ones. The axial aptitude and pipe pile distribution of load under static conditions have been well reported, but more study is needed to understand the dynamic axial response. Therefore, this research discusses the outputs of the 3D finite element models on the soil-pile behavior under different acceleration intensities and soil states by using MIDAS GTS NX. The pipe pile was represented as a simple elastic, and a modified Mohr-Coulomb mode
... Show MoreIn this paper, the time-history responses of a square plan two-story reinforced concrete prototype building, considering the elastic and inelastic behavior of the materials, were studied numerically. ABAQUS software was used in three-dimensional (3D) nonlinear dynamic analysis to predict the inelastic response of the buildings. Concrete Damage Plasticity Model (CDPM) has been used to model the inelastic behavior of the reinforced concrete building under seismic excitation. The input data included geometric information, material properties, and the ground motion. The building structure was designed only for gravity load according to ACI 318 with
... Show MoreReinforced concrete barriers have been commonly used in protecting the important building because the response of R.C. barriers subjected to blast loading is practically more acceptable than other materials used to build the barriers. In this study, the response of R.C. barriers was detected due to the blast effects caused by two charge weights (50 kg and 400 kg); ANSYS 14 was used to simulate the problem. A horizontal distance of 2 m between the explosive TNT charge and the front face of wall was taken. The pressure on the front face of the concrete barriers was measured at three levels. The R.C. barrier was entirely damaged when subjected to the blast effects caused by 400 kg TNT explosion bomb. However, the 50 kg TNT charge had
... Show MoreCantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successful
... Show More