New technologies have risen into popularity causing the Liquid membrane techniques to evolve over other separation techniques due to its high selectivity and recovery, increased fluxes, and reduced investment and operating cost. This work focuses on extracting Methylene Blue (MB), a cationic dye using a simple BLM separation technique from its aqueous phase. It combines extraction and stripping in a single unit operation. The feed phase was an aqueous solution of MB, the solvent chosen was soybean oil for the liquid/organic membrane phase, and tri-octyl amine acted as a carrier. The strip phase was a hydrochloric acid solution for this study. A two-phase equilibrium study was done to choose the correct solvent, carrier, and receiving phase (soybean oil, tri-octyl amine, and HCl) were chosen, which was then followed by a three-phase study. Effect of various parameters like equilibrium time, feed and stripping phase pH, stirring speed, carrier concentration, initial feed concentration, and strip phase concentration were all studied to find out the most optimum working condition for maximum extraction and recovery of MB. The removal efficiency of MB by using soybean oil was found as 92%, at the optimum process conditions for the transport of MB were found as follows: pH in the feed phase (11), pH in the stripping phase (5), initial concentration of MB (20 ppm), carrier concentration (7%) (v/v) TOA and stirring speed (250 rpm), respectively.
The remove of direct blue (DB71) anionic dye on flint clay in aqueous solution was investigated by using a batch system for various dye concentrations. The contact time, pH, adsorbent dose, and temperature was studied under batch adsorption technique. The data of adsorption equilibrium fit with isotherm Langmuar and Freiundlich ,when the correlation coefficient used to elucidate the best fitting isotherm model. The thermodynamic parameters such as, ?Hº ,?Sº and ?Gº. Thermodynamic analysis indicated that the sorption of the dyes onto Flint clay was endothermic and spontaneous.
In this research, the dynamics process of charge transfer from the sensitized D35CPDT dye to tin(iv) oxide( ) or titanium dioxide ( ) semiconductors are carried out by using a quantum model for charge transfer. Different chemical solvents Pyridine, 2-Methoxyethanol. Ethanol, Acetonitrile, and Methanol have been used with both systems as polar media surrounded the systems. The rate for charge transfer from photo-excitation D35CPDTdye and injection into the conduction band of or semiconductors vary from a to for system and from a to for the system, depending on the charge transfer parameters strength coupling, free energy, potential of donor and acceptor in the system. The charge transfer rate in D35CPDT / the syst
... Show MoreHighly-fluorescent Carbon Quantum Dots (CQDs) are synthesized in simple step by hydrothermal carbonization method of natural precursor such as orange juice as a carbon source. Hydrothermal method for synthesized CQDs requires simple and inexpensive equipment and raw materials, thus this method are now common synthesis method. The prepared CQDs have ultrafine size up to few nanometers and several features such as high solubility in water, low toxicity, high biocompatibility, photo-bleaching resistant, Chemical inertness and ease of functionalization which qualifies it for use in many applications such as bio-imaging, photo-labeling and photo-catalysis.
This research demonstrates the
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
Arsenic is a prevalent and pervasive environmental contaminant with varied amounts in drinking water. Arsenic exposure causes cancer, cardiovascular, liver, nerve, and ophthalmic diseases. The current study aimed to find the best conditions for eliminating arsenic from simulated wastewater and their effect on biomarkers of hepatic in mice. Adsorption tests including pH, contact duration, Al-kheriat dosage, and arsenic concentrations were evaluated. Seventy-two healthy albino mice (male) were accidentally allocated into nine groups (n = 8), the first group was considered as healthy control, the second group (AL-Kheriat), and other groups received AL-Kheriat and arsenic 25, 50, 75, 100, 125, 150 and 175 mg/kg, respectively. Next 10 days, the
... Show MoreIn the theoretical part, removal of direct yellow 8 (DY8) from water solution was accomplished using Bentonite Clay as an adsorbent. Under batch adsorption, the adsorption was observed as a function of contact time, adsorbent dosage, pH, and temperature. The equilibrium data were fitted with the Langmuir and Freundlich adsorption models, and the linear regression coefficient R2 was used to determine the best fitting isotherm model. thermodynamic parameters of the ongoing adsorption mechanism, such as Gibb's free energy, enthalpy, and entropy, have also been measured. The batch method was also used for the kinetic calculations, and the day's adsorption assumes first-order rate kinetics. The kinetic studies also show that the intrapar
... Show More