Preferred Language
Articles
/
joe-1163
Salt Distribution in a Soil Irrigated by Subsurface Emitter
...Show More Authors

The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical result. This statistical analysis revealed that there was no much difference between the predicted numerical results, and the measured values. R2 varied from 0.75 to 0.93 and the (RMSE) from 0.079 to 0.116. The comparison confirms the accuracy of the developed model, and it shows that it can be used to simulate the front wetting patterns of water and salt distribution under subsurface trickle irrigation systems. The simulation outcome showed that as the distance from the emitter increased, soil salinity far from the emitter decreased. As expected, irrigation duration and amount affects the dimension of the solute distribution.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Probabilistic Model building using the Transformation Entropy for the Burr type –xii Distribution
...Show More Authors

Entropy define as uncertainty measure has been transfared by using the cumulative distribution function and reliability function for the Burr type – xii. In the case of data which suffer from volatility to build a model the probability distribution on every failure of a sample after achieving limitations function, probabilistic distribution. Has been derived formula probability distribution of the new transfer application entropy on the probability distribution of continuous Burr Type-XII and tested a new function and found that it achieved the conditions function probability, been derived mean and function probabilistic aggregate in order to be approved in the generation of data for the purpose of implementation of simulation

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 16 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect of the Number of Gaussian Points and Their Distribution on Image Quality
...Show More Authors

This  research  involves  studying  the  influence  of  increasing  the

number of Gaussian points and the style of their distribution, on a circular exit pupil, on the numerical calculations accuracy of the point spread function for an ideal optical system and another system having focus error of (0.25 A. and 0.5 A. )

It was shown that the accuracy of the results depends on the type of

distributing points on the exit pupil. Also, the accuracy increases with the increase of the number of points (N) and the increase of aberrations which requires on increas (N).

View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
THERMAL BUCKLING OF RECTANGULAR PLATES WITH DIFFERENT TEMPERATURE DISTRIBUTION USING STRAIN ENERGY METHOD
...Show More Authors

By using governing differential equation and the Rayleigh-Ritz method of minimizing the total potential energy of a thermoelastic structural system of isotropic thermoelastic thin plates, thermal buckling equations were established for rectangular plate with different fixing edge conditions and with different aspect ratio. The strain energy stored in a plate element due to bending, mid-plane thermal force and thermal bending was obtained. Three types of thermal distribution have been considered these are: uniform temperature, linear distribution and non-linear thermal distribution across thickness. It is observed that the buckling strength enhanced considerably by additional clamping of edges. Also, the thermal buckling temperatures and

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Temperatures Distribution and Residual Stresses of High Melting Temperature Polymer
...Show More Authors

This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 02 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Identification of microflora associated with dust falling on Karbala province and seasonal distribution
...Show More Authors

Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Civil Engineering Research
Distribution Factor of Curved I-Girder Bridges under Iraqi Standard Bridge Live Loads
...Show More Authors

View Publication Preview PDF
Publication Date
Wed May 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Experimental Comparison between Classical and Bayes Estimators for the Parameter of Exponential Distribution
...Show More Authors

This paper is interested in comparing the performance of the traditional methods to estimate parameter of exponential distribution (Maximum Likelihood Estimator, Uniformly Minimum Variance Unbiased Estimator) and the Bayes Estimator in the case of data to meet the requirement of exponential distribution and in the case away from the distribution due to the presence of outliers (contaminated values). Through the employment of simulation (Monte Carlo method) and the adoption of the mean square error (MSE) as criterion of statistical comparison between the performance of the three estimators for different sample sizes ranged between small, medium and large        (n=5,10,25,50,100) and different cases (wit

... Show More
View Publication Preview PDF
Publication Date
Mon May 01 2023
Journal Name
Petroleum Research
Investigating tight oil reservoir production performance: Influence of geomechanical parameters and their distribution
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Bayesian Estimation for Two Parameters of Gamma Distribution under Generalized Weighted Loss Function
...Show More Authors

This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).

Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Survival estimation for singly type one censored sample based on generalized Rayleigh distribution
...Show More Authors

This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.

View Publication Preview PDF
Crossref