The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical result. This statistical analysis revealed that there was no much difference between the predicted numerical results, and the measured values. R2 varied from 0.75 to 0.93 and the (RMSE) from 0.079 to 0.116. The comparison confirms the accuracy of the developed model, and it shows that it can be used to simulate the front wetting patterns of water and salt distribution under subsurface trickle irrigation systems. The simulation outcome showed that as the distance from the emitter increased, soil salinity far from the emitter decreased. As expected, irrigation duration and amount affects the dimension of the solute distribution.
To evaluate the effects of the thermal analysis and temperature of the atmospheric heat on the optical system. it varying the thermal expansion (positive or Negative Values) of the material and then changes the characteri of the optical system properties such as radius of curvetur of the surfaces, size of the aperture stop ect.
This paper had calculated the accepted ratio of the temperature variable on the optical system during analyzing the effect of thermal analysis on the Radial Energy Distribution for +20C0 and +50C0 •
In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o
In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data sets
This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show More