The pumping station became widely used in many fields. Free surface vortices at intakes of pumps are not favorable. It may cause noise, excessive vibration, damage to the pumping structure, reduction in efficiency and flow for hydro-turbines, etc. One of the important problems encountered during the pump intake design is the depth of submergence and other design parameters to avoid strong free-surface vortices formation. This study aims to compute the critical submergence depth with some geometrical and hydraulic limitations by using Computational Fluid Dynamic (CFD) package. The mathematical model was validated with a laboratory model that had been conducted. The model of three intake pipes was investigated under five different submergence depth (S), three different spaces between intake pipes (b), and five different suction velocities (v). The results showed the best operation cases when the space between intake pipes (b) equal to 4D, the submergence depth of water is equal or greater than 1.25 from the bell mouth diameter of intake pipe (D), and the suction velocity less than 2 m/s. The worst case was when the space between the suction pipe (b) was (2D), in this case, the vortex appeared at submergence depth (S/D = 2) with suction velocity 3 m/s.
This study calculated the surface roughness length (Zo), zero-displacement length (Zd) and height of the roughness elements (ZH) using GIS applications. The practical benefit of this study is to classify the development of Baghdad, choose the appropriate places for installing wind turbines, improve urban planning, find rates of turbulence, pollution and others. The surface roughness length (Zo) of Baghdad city was estimated based on the data of the wind speed obtained from an automatic weather station installed at Al-Mustansiriyah University, the data of the satellite images digital elevation model (DEM), and the digital surface model (DSM), utilizing Remote Sensing Techniques. The study area w
... Show MoreIn this paper, magnesium oxide nanoparticles (MgO NPS) have been prepared and characterized and its concentration effect has been studied on polymers surface (MgO NPS). The results showed that the degradation of poly methyl methacrylate increased when using such metal oxide. The results also showed that the metal oxide increased the degradation of poly methyl methacrylate. X-ray diffraction, scanning electron microscopy, atomic force microscopy were used to study the morphological characteristics and size of nano MgO particles analysis. Films were prepared by mixing the different masses of MgO NPS (0.025, 0.05, 0.1, 0.2 and 0.4) % with a polymer solution ratio (W/V) 7 %. Photo-
... Show MoreBackground: Fracture of different types of acrylic denture base is a common problem associated with dental prosthesis. Studies suggested that the repair strength may be improved by several means including surface treatment with chemical agents. The aim of the study was to evaluate the effect of surface treatment with acrybond-bonding agent and monomer on fractured denture base in respect to transverse, tensile and shear bond strength and evaluation of the mode of failure by light microscope. Materials and methods: Two hundred seventy specimens were prepared and divided into 3 groups according to the material used (regular conventional, rapid simplified and high impact) heat cure acrylic. The specimen in each groups were prepared specificall
... Show MoreAbstract Objective: To identify correlation of elevated LDH & CRP levels with the outcomes of COVID-19. Methodology: The cross-sectional retrospective study consisted of 200 COVID-19 patients who presented at a private clinical in Baghdad, Iraq. It was carried out from February 2021 to February 2022. Data included age, gender and clinical presentation. Blood samples were taken for high sensitivity CRP and LDH in the serum. Results: Out of 200 patients, 50 were critical and 150 severe according to clinical features. LDH and CRP showed a significant increase (p=0.000) in critical patients. This group involved admission to the respiratory intensive care unit requiring mechanical ventilation than in patients with severe COVID-19 (760.5±6.3 vs.
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb