This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fuel cell system and to achieve the stability of the desired output voltage of fuel cell. The numerical simulation results (MATLAB) package along with the schematic design experimental work using Spartan-3E xc3s500e-4fg320 board with the Xilinx development tool Integrated Software Environment (ISE) version 14.7 and using Verilog hardware description language for design testing are illustrated the performance enhancement of the proposed an adaptive intelligent FPGA-PID-NN controller in terms of error voltage reduction and generating optimal value of the hydrogen partial pressure action (PH2) without oscillation in the output and no saturation state when these results are compared with other controllers.
Liquid electrodes of domperidone maleate (DOMP) imprinted polymer were synthesis based on precipitation polymerization mechanism. The molecularly imprinted (MIP) and non-imprinted (NIP) polymers were synthesized using DOMP as a template. By methyl methacrylate (MMA) as monomer, N,Nmethylenebisacrylamide (NMAA) and ethylene glycol dimethacrylate (EGDMA) as cross-linkers and benzoyl peroxide (BP) as an initiator. The molecularly imprinted membranes were synthesis using acetophenone (APH), di-butyl sabacate (DBS), Di octylphthalate (DOPH) and triolyl phosphate (TP)as plasticizers in PVC matrix. The slopes and limit of detection of l
... Show MoreCopper indium disulphide, CuInS2, is a promising absorber material for thin film photovoltaic which has recently attracted considerable attention due to its suitability to reach high efficiency solar cells by using low cost techniques. In this work CuInS2 thin films have been deposited by chemical spray pyrolysis onto glass substrates at ambient atmosphere, using different [Cu]/[In] ratio in the aqueous solutions at substrate temperature 3000C
and different annealing temperatures . Structural and optical properties of CIS films were analyzed by X-ray diffraction, and optical spectroscopy. Sprayed CIS films are polycrystalline with a chalcopyrite structure with a preferential orientation along the 112 direction and no remains of oxides
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
In folk medicine there are various medicinal amalgamation possessing hepatoprotective activity. This activity is of significance because several toxins cause liver injury. Hence, many pharmaceutical companies are targeting herbal medicines for the treatment of liver abnormalities and towards evolving a safe and effective formulation with desired route of administration. In current review we have focused on the studies showing hepatoprotective effect using marine compounds and plant derived compounds. Liver disorder, a global health problem, usually include acute or chronic hepatitis, heptoses, and cirrhosis. It may be due to toxic chemicals and certain antibiotics. Uncontrolled consumption of alcohol also affects liver in an unhealthy wa
... Show MoreAsset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques
... Show MoreThis paper presents a meta-heuristic swarm based optimization technique for solving robot path planning. The natural activities of actual ants inspire which named Ant Colony Optimization. (ACO) has been proposed in this work to find the shortest and safest path for a mobile robot in different static environments with different complexities. A nonzero size for the mobile robot has been considered in the project by taking a tolerance around the obstacle to account for the actual size of the mobile robot. A new concept was added to standard Ant Colony Optimization (ACO) for further modifications. Simulations results, which carried out using MATLAB 2015(a) environment, prove that the suggested algorithm outperforms the standard version of AC
... Show More