This paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fuel cell system and to achieve the stability of the desired output voltage of fuel cell. The numerical simulation results (MATLAB) package along with the schematic design experimental work using Spartan-3E xc3s500e-4fg320 board with the Xilinx development tool Integrated Software Environment (ISE) version 14.7 and using Verilog hardware description language for design testing are illustrated the performance enhancement of the proposed an adaptive intelligent FPGA-PID-NN controller in terms of error voltage reduction and generating optimal value of the hydrogen partial pressure action (PH2) without oscillation in the output and no saturation state when these results are compared with other controllers.
The Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process
Quadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL) capability. With the vast advancements in small-size sensors, actuators, and processors, researchers are now focusing on developing mini UAV’s to be used in both research and commercial applications. This work presents a detailed mathematical nonlinear dynamic model of the quadrotor which is formulated using the Newton-Euler method. Although the quadrotor is a 6 DOF under-actuated system, the derived rotational subsystem is fully actuated, while the translational subsystem is under-actuated. The der
... Show MoreL1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC). The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance.
The tracking and steady state performances of both controllers have been assessed fo
... Show MoreThe present article delves into the examination of groundwater quality, based on WQI, for drinking purposes in Baghdad City. Further, for carrying out the investigation, the data was collected from the Ministry of Water Resources of Baghdad, which represents water samples drawn from 114 wells in Al-Karkh and Al-Rusafa sides of Baghdad city. With the aim of further determining WQI, four water parameters such as (i) pH, (ii) Chloride (Cl), (iii) Sulfate (SO4), and (iv) Total dissolved solids (TDS), were taken into consideration. According to the computed WQI, the distribution of the groundwater samples, with respect to their quality classes such as excellent, good, poor, very poor and unfit for human drinking purpose, was found to be
... Show MoreThe paper proposes a methodology for predicting packet flow at the data plane in smart SDN based on the intelligent controller of spike neural networks(SNN). This methodology is applied to predict the subsequent step of the packet flow, consequently reducing the overcrowding that might happen. The centralized controller acts as a reactive controller for managing the clustering head process in the Software Defined Network data layer in the proposed model. The simulation results show the capability of Spike Neural Network controller in SDN control layer to improve the (QoS) in the whole network in terms of minimizing the packet loss ratio and increased the buffer utilization ratio.
Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further s
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More