Shatt al-Arab is the only navigational artery in Iraq, extending from the city of Qurna to its mouth in the Arabian Gulf at the city of Al-Fao within the governorate of Basrah for a length of approximately 204 km. Its width ranges from 400 m to 2000 m, and its depth ranges from 8 m to 20 m. The southern part of it, 93 km long from Umm al-Rassas Island to Ras al-Bisha, represents the international border between Iraq and Iran, where the Thalweg line represents the border between the two countries, which is the deepest point in the riverbed (according to the 1975 Algiers Agreement). The western bank (the Iraqi side) within the common border of Shatt al-Arab is subject to continuous erosion, which leads to the shifting of the Thalweg line towards Iraqi territory and thus leads to loss of Iraqi land to Iran. Reducing flow velocity along the Iraqi side can lead to reducing or preventing erosion in the river. Increasing the riverbed roughness will reduce the velocity of flow and then reducing the erosion. This principle was adopted in this study to investigate the effect of increasing roughness in a strip along a reach of the riverbed on the distribution of longitudinal velocity in cross-sections at the rest of the selected reach. A reach of Shatt al-Arab with a length of 2500 m, located 34 km north of Fao City, was selected to represent the study area. This reach was simulated by using numerical modeling CFD solver (fluent) with three different roughnesses for an upstream part of the river bed and the velocities compared with the natural (original) roughness of Shatt al-Arab. The results showed an appreciable effect of the increased bed roughness on the velocity distribution and the maximum velocity location by shifting it to the other side.
The research examines the mechanism of application of )ISO 21001: 2018( in the Energy Branch- Electromechanical Engineering at the University of Technology to achieve the quality of the educational service to prepare the branch to obtain the certificate of conformity with the requirements of) ISO 21001: 2018(, the necessary data were collected Depending on the (CHEKLIST) of (ISO 21001: 2018), field interviews and records of the concerned department, The researchers reached a number of results, the most prominent of which was the adoption of high quality leadership leaders and their willingness to implement the standard requirements, The university has a basic structure that qualifies it to implement the international standard, as
... Show MoreThe development that solar energy will have in the next years needs a reliable estimation of available solar energy resources. Several empirical models have been developed to calculate global solar radiation using various parameters such as extraterrestrial radiation, sunshine hours, albedo, maximum temperature, mean temperature, soil temperature, relative humidity, cloudiness, evaporation, total perceptible water, number of rainy days, and altitude and latitude. In present work i) First part has been calculated solar radiation from the daily values of the hours of sun duration using Angstrom model over the Iraq for at July 2017. The second part has been mapping the distribution of so
Background: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
This paper considers a new Double Integral transform called Double Sumudu-Elzaki transform DSET. The combining of the DSET with a semi-analytical method, namely the variational iteration method DSETVIM, to arrive numerical solution of nonlinear PDEs of Fractional Order derivatives. The proposed dual method property decreases the number of calculations required, so combining these two methods leads to calculating the solution's speed. The suggested technique is tested on four problems. The results demonstrated that solving these types of equations using the DSETVIM was more advantageous and efficient
This study shows that it is possible to fabricate and characterize green bimetallic nanoparticles using eco-friendly reduction and a capping agent, which is then used for removing the orange G dye (OG) from an aqueous solution. Characterization techniques such as scanning electron microscopy (SEM), Energy Dispersive Spectroscopy (EDAX), X-Ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) were applied on the resultant bimetallic nanoparticles to ensure the size, and surface area of particles nanoparticles. The results found that the removal efficiency of OG depends on the G‑Fe/Cu‑NPs concentration (0.5-2.0 g.L-1), initial pH (2‑9), OG concentration (10-50 mg.L-1), and temperature (30-50 °C). The batch experiments showed
... Show More