This paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Case (II): front and back cooling (pump supply water every 35 minutes), Case (III): cooling both sides using Arduino controller. Water cooling pump operation depending on the panel temperatures (temperature sensors were installed on the front of the panel), Case (IV): Repeating case III with different water flow rates. Experimental results showed that the average reduction in module temperatures was 4, 8,12.2 and 12.6 ⁰C respectively by Case (I), (II), (III) and (IV) with respect to a non-cooling module. Using evaporative water cooling achieved a total improvement of 1.74%, 2.8%, 15.8%, and 16% in the conversion efficiency of the panel by the Case (I), (II), (III) and (IV) respectively when compared to a non-cooling module.
Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreThe spectral response of the Si solar cell does not coincidence with the sun irradiance spectrum, so the efficiency of the Si solar cell is not high. To improve the Si solar cell one try to make use of most region of the sun spectrum by using dyes which absorb un useful wavelengths and radiate at useful region of spectrum (by stock shift). Fluorescence's dye is used as luminescent concentrator to increase the efficiency of the solar cell. The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
New designs of solar using ray tracing program, have been presented for improved the performance and the out put power of the silicon solar cell, as well as reducing the cost of system working by solar energy. Two dimensional solar concentrator (Fresnel lenses) and three dimensional concentrators (parabola dish and cassegrain) were used as concentrator for photovoltaic applications (CPV). The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreThe principal forms of radiation dosage for humans from spontaneous radiation material are being recognized as radon and its progenitors in the interior environment. Radiation-related health risks are caused by radon in water supply, which can be inhaled or ingested. Materials and Methods: The solid-state CR-39 nuclear trace detectors method was using in this research for measuring accumulation of radioactivity in water supply in different locations of Iraq's southwest corner of Baghdad. In Baghdad district, 42 samples were selected from 14 regions (3 samples out of each region) and put in dosimeters for 50 days. Results: The mean radon concentration was 49.75 Bq/m3, that is lower than the internationally recognized limit of 1100 Bq /m3. Th
... Show MoreThe majority of real-world problems involve not only finding the optimal solution, but also this solution must satisfy one or more constraints. Differential evolution (DE) algorithm with constraints handling has been proposed to solve one of the most fundamental problems in cellular network design. This proposed method has been applied to solve the radio network planning (RNP) in the forthcoming 5G Long Term Evolution (5G LTE) wireless cellular network, that satisfies both deployment cost and energy savings by reducing the number of deployed micro base stations (BSs) in an area of interest. Practically, this has been implemented using constrained strategy that must guarantee good coverage for the users as well. Three differential evolution
... Show MorePresents here in the results of comparison between the theoretical equation stated by Huang and Menq and laboratory model tests used to study the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include depth of first layer of reinforcement, vertical spacing of reinforcement layers, number of reinforcement layers and types of reinforcement layers The results show that the theoretical equation can be used to estimate the bearing capacity of loose sand.