This paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Case (II): front and back cooling (pump supply water every 35 minutes), Case (III): cooling both sides using Arduino controller. Water cooling pump operation depending on the panel temperatures (temperature sensors were installed on the front of the panel), Case (IV): Repeating case III with different water flow rates. Experimental results showed that the average reduction in module temperatures was 4, 8,12.2 and 12.6 ⁰C respectively by Case (I), (II), (III) and (IV) with respect to a non-cooling module. Using evaporative water cooling achieved a total improvement of 1.74%, 2.8%, 15.8%, and 16% in the conversion efficiency of the panel by the Case (I), (II), (III) and (IV) respectively when compared to a non-cooling module.
A phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreA phytoremediation experiment was carried out with kerosene as a model for total petroleum hydrocarbons. A constructed wetland of barley was exposed to kerosene pollutants at varying concentrations (1, 2, and 3% v/v) in a subsurface flow (SSF) system. After a period of 42 days of exposure, it was found that the average ability to eliminate kerosene ranged from 56.5% to 61.2%, with the highest removal obtained at a kerosene concentration of 1% v/v. The analysis of kerosene at varying initial concentrations allowed the kinetics of kerosene to be fitted with the Grau model, which was closer than that with the zero order, first order, or second order kinetic models. The experimental study showed that the barley plant designed in a subsu
... Show MoreThis paper suggesting a new modern method to evaluate the performance of hotel industry at Jordan instead of the classical method used by the industry and that is Bench Marking , this method can be done by comparing the performance of hotel industry at two serial years which helps in calculating a standard performance .
The industry can use this standard to identify the variance, which make the evaluation of performance easier and support the efforts to develop the hotel industry at all levels and enable to give high quality services to customers.
The study believed that this situation would not be achieved unless the hotel industry will app
... Show MoreThis work concerns the synthesis of two types of composites based on antimony oxide named (Sb2O3):(WO3, In2O3). Thin films were fabricated using pulsed laser deposition. The compositional analysis was explored using Fourier transform infrared spectrum (FTIR), which confirms the existence of antimony, tungsten, and indium oxides in the prepared samples. The hall effect measurement showed that antimony oxide nanostructure thin films are p-type and gradually converted to n-type by the addition of tungsten oxide, while they are converted almost instantly to n-type by the addition of indium oxide. Different heterojunction solar cells were prepared from (Sb2O3:WO
... Show MoreIn this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
Among several separation processes, the air flotation distinguish as remarkably high potential separation process related to its high separation efficiency and throughput, energy-efficient, simple process, cost-effective, applicable to a wide range of oily wastewater and no by-products. The current study aimed to investigate the effect of the type and concentration of surfactant on the stability of oil-water emulsion and efficiency of the separation process. For this purpose, three types of surfactant where used (anionic SDS, mixed nonionic Span 85/Tween 80, and cationic CTAB). The results demonstrated that the Span 85/Tween 80 surfactant has the best stability, and it increases with the surfactant concentration augmentation. The removal ef
... Show MoreThis study investigated the ability of using crushed glass solid wastes in water filtration by using a pilot plant, constructed in Al-Wathba water treatment plant in Baghdad. Different depths and different grain sizes of crushed glass were used as mono and dual media with sand and porcelaniate in the filtration process. The mathematical model by Tufenkji and Elimelech was used to evaluate the initial collection efficiency η of these filters. The results indicated that the collection efficiency varied inversely with the filtration rate. For the mono media filters the theoretical ηth values were more than the practical values ηprac calculated from the experimental work. In the glass filter ηprac was obtained by multiplying ηth by a facto
... Show MoreThis study investigated the ability of using crushed glass solid wastes in water filtration by using a pilot plant, constructed in Al-Wathba water treatment plant in Baghdad. Different depths and different grain sizes of crushed glass were used as mono and dual media with sand and porcelaniate in the filtration process. The mathematical model by Tufenkji and Elimelech was used to evaluate the initial collection efficiency η of these filters. The results indicated that the collection efficiency varied inversely with the filtration rate. For the mono media filters the theoretical ηth values were more than the practical values ηprac calculated from
the experimental work. In the glass filter ηprac was obtained by multiplying ηth by a