Magnetic plaster kiln dust (MPKD) was synthesized as a unique, low-cost composite reused of byproduct plaster kiln dust (PKD), which is considered a source of air pollution. The FESEM, EDS, XRD, FTIR, VSM, and BET tests were used to characterize the MPKD. The characterization revealed that the MPKD was nanotubes non-agglomerated and super-paramagnetic with a high specific surface area (102.7 m2/g). Compared with the specific area of other materials (composites), the MPKD could be considered a promising substance in the field of water/wastewater treatment.
In recent years, observed focus greatly on gold nanoparticles synthesis due to its unique properties and tremendous applicability. In most of these researches, the citrate reduction method has been adopted. The aim of this study was to prepare and optimize monodisperse ultrafine particles by addition of reducing agent to gold salt, as a result of seed mediated growth mechanism. In this research, gold nanoparticles suspension (G) was prepared by traditional standard Turkevich method and optimized by studying different variables such as reactants concentrations, preparation temperature and stirring rate on controlling size and uniformity of nanoparticles through preparing twenty formulas (G1-G20). Subsequently, the selected formula that pr
... Show MoreWe have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
In this work, lead oxide nanoparticles were prepared by laser ablation of lead target immersed in deionized water by using pulsed Nd:YAG laser with laser energy 400 mJ/pulse and different laser pulses. The chemical bonding of lead oxide nps was investigated by Fourier Transform Infrared (FTIR); surface morphology and optical properties were investigated by Scanning Electron Microscope (SEM) and UV-Visible spectroscopy respectively, and the size effect of lead oxide nanoparticles was studied on its antibacterial action against two types of bacteria Gram-negitive (Escherichia coli) and Gram-positive (Staphylococcusaurus) by diffusion method. The antibacterial property results show that the antibacterial activity of the Lead oxide NPs was
... Show MoreCilnidipine is a dihydropyridine class of calcium channel blockers, it is classified as a BCS class II drug, characterized by a low oral bioavailability of 13%. Consequently, the utilization of nanoparticle preparation is anticipated to enhance its bioavailability. The objective of the research is to integrate cilnidipine nanoparticles into oral films as a means of enhancing patient adherence. The optimal polymers for producing Cilnidipine films were PVA cold and or HPMC E5 at different concentrations using a casting technique with glycerol as a plasticizer. The Nano suspension-based preparation of Cilnidipine's oral film containing the combination of polymers exhibited a significant enhancement in vitro dissolution, with a percentage excee
... Show MoreIn this study, stabilization of expansive soils using waste materials namely; Cement Kiln Dust (CKD), and waste plastic bottles (WPB) was experimentally investigated. Using CKD and WPB are exponentially increasing day by day, due to their capability to solve both environmental and geotechnical problems successfully. Expansive soils were collected from locations with a wide range of plasticity index (PI) (15 - 27) and liquid limit (LL) (35% - 64%). Stabilizer percentages were varied from 0% to 20%, and curing durations for CKD cases were 7 and 28 days. Results showed the best percentages of CKD and WPB are 12% of each one respectively. LL, plastic limit (PL), and swelling percent (SP) loss were observed, which are 46%, 55%, and 96% respec
... Show MoreIron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
Ferric oxide nanoparticles Fe3O4NPs have been prepared by the coprecipitation method, which were used to functionalize the surface of electrospun nanofibers of polyacrylonitrile to increase their effectiveness in adsorption of Congo red (CR) dye from their aqueous solutions. The effect factors of adsorption were systematically investigated such as adsorbent mass, initial concentration, contact time, temperature, ionic strength and pH. The maximum adsorbed amount of the dye was at 0.003g of adsorbent. The adsorption of dye increased with increasing initial dye concentration and the system reaches to the equilibrium state at 150 min. The adsorbed dye capacity decreases with increasing temperature which indicates to the exothermic nature of ad
... Show More