Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
Face detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers. The experiment’s
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Keywords provide the reader with a summary of the contents of the document and play a significant role in information retrieval systems, especially in search engine optimization and bibliographic databases. Furthermore keywords help to classify the document into the related topic. Keywords extraction included manual extracting depends on the content of the document or article and the judgment of its author. Manual extracting of keywords is costly, consumes effort and time, and error probability. In this research an automatic Arabic keywords extraction model based on deep learning algorithms is proposed. The model consists of three main steps: preprocessing, feature extraction and classification to classify the document
... Show MoreTwitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM
... Show MoreBackground: Cytology is one of the important diagnostic tests done on effusion fluid. It can detect malignant cells in up to 60% of malignant cases. The most important benign cell present in these effusions is the mesothelial cell. Mesothelial atypia can be striking andmay simulate metastatic carcinoma. Many clinical conditions may produce such a reactive atypical cells as in anemia,SLE, liver cirrhosis and many other conditions. Recently many studies showed the value of computerized image analysis in differentiating atypical cells from malignant adenocarcinoma cells in effusion smears. Other studies support the reliability of the quantitative analysisand morphometric features and proved that they are objective prognostic indices. Method
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show More