Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
The current research aims to reveal the strength of education and the direction of the relationship between the formal thinking and learning methods of Kindergarten department students. To achieve this objective, the researcher developed a scale of formal thinking according to the theory of (Inhelder & Piaget 1958) consisting of (25) items in the form of declarative phrases derived from the analysis of formal thinking skills based on a professional situation that students are expected to interact with in a professional way. The research sample consisted of (100) female students selected randomly who were divided into four groups based on the academic stages, the results revealed that The level of formal thinking of the main sample is
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreThis study investigated the effect of using brainstorming as a teaching technique on the students’ performance in writing different kinds of essays and self regulation among the secondary students. The total population of this study, consisted of (51) female students of the 5th Secondary grade in Al –kawarzmi School in Erbil during the academic year 2015-2016. The chosen sample consisted of 40 female students, has been divided into two groups. Each one consists of (20) students to represent the experimental group and the control one. Brainstorming technique is used to teach the experimental group, and the conventional method is used to teach the control group. The study inst
... Show MoreBotnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper
Traffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThe problem of the research is indicated by answering the following questions: 1) what are the attitudes of the Arabic language teachers towards homework?
2) Do the Arabic language teachers differ in their attitudes towards homework according to their specialization? 3) Do the Arabic language teachers differ in their attitudes towards homework according to their gender (male and female)? According to the three questions asked above, we may state the following hypotheses. There is no statistically significant difference between the average of the marks of Arabic language teachers in the real practice of the scale of the attitudes towards their homework and their average in the hypothetical practice of the
... Show MoreThe paper is concerned with a linguistic analysis of the blurbs, used in advertising English and Arabic novels. A blurb is an advertising persuasive text, written on the back cover of a book. Blurbs of selected novels are chosen as representative examples. The selected blurbs belong to two languages, Arabic and English. The paper aims at studying the linguistic features that are characteristic of blurbs as advertising texts and making a sort of comparison between English blurbs and Arabic ones. A linguistic analysis on four levels is presented. Blurbs are tackled from the point of view of four linguistic disciplines that are phonology, syntax, semantics and discourse analysis. A reference is made to the linguistic featu
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show More