Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
This study includes analytical methods for the determination of the drug amoxicillin trihydrate (Amox.) in some pharmaceutical preparations using Cobalt ion (Co(II)) as complexing metal. The best conditions for complexation were: the reaction time was 20 minutes, pH=1.5 and the best temperature of reaction was 70 ËšC. Benzyl alcohol was the best solvent for extraction the complex.
Keywords: Amoxicillin, Cobalt(II), Complex, Molar ratio.
In this study, the quality assurance of the linear accelerator available at the Baghdad Center for Radiation Therapy and Nuclear Medicine was verified using Star Track and Perspex. The study was established from August to December 2018. This study showed that there was an acceptable variation in the dose output of the linear accelerator. This variation was ±2% and it was within the permissible range according to the recommendations of the manufacturer of the accelerator (Elkta).
The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental
... Show MoreAstronomy image is regarded main source of information to discover outer space, therefore to know the basic contain for galaxy (Milky way), it was classified using Variable Precision Rough Sets technique to determine the different region within galaxy according different color in the image. From classified image we can determined the percentage for each class and then what is the percentage mean. In this technique a good classified image result and faster time required to done the classification process.
This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MorePhotocatalytic degradation of methylene blue was studied using CdS and ZnS as catalyst. The photocatalytic activity of the specimen was studied by exposing to UV-radiation. The result shows that the degradation efficiency of the dye for CdS micro-particles was 92% after 7 hours and for ZnS micro-particles was 88.29% for the same time interval.
Colloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show More