Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
ABSTRACT This paper has a three-pronged objective: offering a unitary set of semantic distinctive features to the analysis of nominal “hatred synonyms” in the lexicon of both English and Standard Arabic (SA), applying it procedurally to test its scope of functionality crosslinguistically, and singling out the closest noun synonymous equivalents among the membership of the two sets in this particular lexical semantic field in both languages. The componential analysis and the matching procedures carried have been functional in identifying ten totally matching equivalents (i.e. at 55.6%), and eight partially matching ones (i.e. at %44.4%). This result shows that while total matching equivalences do exist in the translation of certain Eng
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreLanguage plays a major role in all aspects of life. Communication is regarded as the most important of these aspects, as language is used on a daily basis by humanity either in written or spoken forms. Language is also regarded as the main factor of exchanging peoples’ cultures and traditions and in handing down these attributes from generation to generation. Thus, language is a fundamental element in identifying peoples’ ideologies and traditions in the past and the present. Despite these facts, the feminist linguists have objections to some of the language structures, demonstrating that language is gender biased to men. That is, language promotes patriarchal values. This pushed towards developing extensive studies to substantiate s
... Show MoreTranslating culture-specific proverbs (CSPs) is a challenging task since they often occur in a peculiar context. Further, CSPs are intended to imply meanings that extend far beyond the literal meaning of such a kind of proverbs. As far as English and Arabic are concerned, translators often encounter problems in translating CSPs due to cultural differences between the source language(SL) and the target language (TL) as well as what seems to be the lack of equivalence for some CSPs.
In view of this, the present study aims at investigating the translation of CSPs in three English-Arabic dictionaries of proverbs, namely Dictionary of Common English Proverbs Translated and Explained (2004), One thousand and One English Pr
... Show MoreWellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreBioinformatics is one of the computer science and biology sub-subjects concerned with the processes applied to biological data, such as gathering, processing, storing, and analyzing it. Biological data (ribonucleic acid (RNA), deoxyribonucleic acid (DNA), and protein sequences) has many applications and uses in many fields (data security, data segmentation, feature extraction, etc.). DNA sequences are used in the cryptography field, using the properties of biomolecules as the carriers of the data. Messenger RNA (mRNA) is a single strand used to make proteins containing genetic information. The information recorded from DNA also carries messages from DNA to ribosomes in the cytosol. In this paper, a new encryption technique bas
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show More