Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
MCA has gained a reputation for being a very useful statistical method for determining the association between two or more categorical variables and their graphical description. For performance this method, we must calculate the singular vectors through (SVD). Which is an important primary tool that allows user to construct a low-dimensional space to describe the association between the variables categories. As an alternative procedure to use (SVD), we can use the (BMD) method, which involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, the (HD) is formed. The aim of study is to use alternative method of (MCA) that is appropriate with order
... Show MoreThe research work represent a fast and simple method for the determination of methionine using chemiluminescence for the methionine-sodium hydroxide-luminol for the generation of a chemiluminesecent derivative of luminal. The emission was measured by continuous flow analysis made sample size of 83µL was used.Response versus concentration extended from 0.2-20 mM.L-1 with a percentage linearity of 96.17% or with 99.17% percentage of linearity for the range 0.6-20 mM.L-1. Reaching to a L.O.D. at (S/N=3) for 5 µM.L-1 from the gradual dilution for the minimum concentration in the calibration graph with a repeatability of less than 0.5% (n=10). A comparison was made between the new developed method with the classical method for the spectrophoto
... Show MoreThe present study focused mainly on the analysis of stiffened and unstiffened composite laminated plates subjected to buckling load. Analytical, numerical and experimental analysis for different cases has been considered. The experimental investigation is to manufacture the laminates and to find mechanical properties of glass-polyester such as longitudinal, transverse young modulus, shear modulus. The compressive test was carried to find the critical buckling load of plate. The design parameters of the laminates such as aspect ratio, thickness ratio, boundary conditions and number of stiffeners were investigated using high order shear deformation theory (HOST) and Finite element coded by ANSYS .The main conclusion was the buckling load c
... Show MoreThe Purpose of this study are analyze financial lease advantage through analyze and discuss financial lease cost, and achieve tax advantage to reach study objective. study include two firms ,oil firm and construction firm with limited liability. The inductive method is used for the applied part in analyzing the financial data of the companies considered in 2011-2015.The result of the study shows that the financial lease achieve present value of the costs is positive. This study found out the results that verify the hypothesis: The tax advantage of financial Leasing is characterized by decreasing cost and achieving higher tax shield. The study also found the most important recommendations of awareness of the benefits arising f
... Show MoreThe research objective are analyze financial leverage advantage through analyze and discuss financial leverage cost, and achieve tax advantage. study include two firms ,oil firm and industrial companies firm with limited liability.The inductive method is used for the applied part in analyzing the financial data of the companies considered in 2011-2015.The result of the study shows that the financial leverage achieve present value of the costs is Negative . The study concluded that the most important conclusions of the tax advantage of leverage is higher costs as well as achieving a low tax shield ,This study found out the results that interest payments related to pre-tax all of the loan amount and the percentage of the interest rate on b
... Show MoreThe density-based spatial clustering for applications with noise (DBSCAN) is one of the most popular applications of clustering in data mining, and it is used to identify useful patterns and interesting distributions in the underlying data. Aggregation methods for classifying nonlinear aggregated data. In particular, DNA methylations, gene expression. That show the differentially skewed by distance sites and grouped nonlinearly by cancer daisies and the change Situations for gene excretion on it. Under these conditions, DBSCAN is expected to have a desirable clustering feature i that can be used to show the results of the changes. This research reviews the DBSCAN and compares its performance with other algorithms, such as the tradit
... Show MoreTranslation is a dynamic and living process that cannot be considered equal to the original text and requires the appropriate structure, language, thought and culture of the target language, and the translator's intellectual, linguistic and cultural influences inadvertently penetrate into the translated text. It causes heterogeneity of the destination text with the source text.
Admiral's theory is trying to help by providing components and suggested approaches to resolve these inconsistencies. In the meantime, in addition to the mission of putting words together, the translator must sometimes sit in the position of the reader and judge and evaluate the translated text in order to understand its shortcomings and try to correct it a
... Show MoreThis work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show MoreHyperbole is an obvious and intentional exaggeration in the sense that it takes things to such an extreme that the audience goes too far and then pulls itself back to a more reasonable position, i.e. it is an extravagant statement or figure of speech not intended to be taken literally. This paper focuses on the formal and functional perspectives in the analysis of hyperbole which American candidates produce in their speeches in electoral campaigns, for it is hypothesized that candidates in their electoral campaigns use hyperbolic expressions excessively to persuade voters of the objectives of their electoral campaign programs. Hence, it aims to analyze hyperbole in context to determine the range of pragmatic func
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More