Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other languages like English. The proposed model tackles Arabic Sentiment Analysis (ASA) by using a DL approach. ASA is a challenging field where Arabic language has a rich morphological structure more than other languages. In this work, Long Short-Term Memory (LSTM) as a deep neural network has been used for training the model combined with word embedding as a first hidden layer for features extracting. The results show an accuracy of about 82% is achievable using DL method.
Cancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreThe determiner phrase is a syntactic category that appears inside the noun phrase and makes it definite or indefinite or quantifies it. The present study has found wide parametric differences between the English and Arabic determiner phrases in terms of the inflectional features, the syntactic distribution of determiners and the word order of the determiner phrase itself. In English, the determiner phrase generally precedes the head noun or its premodifying adjectival phrase, with very few exceptions where some determiners may appear after the head noun. In Arabic, parts of the determiner phrase precede the head noun and parts of it must appear after the head noun or after its postmodifying adjectival phrase creating a discontinu
... Show MoreVerbal Antonyms: A research in the relationship in meaning Between the words in Arabic language
Summary of the research : Our research tagged (Arabic language in the media between warning and development) attempts to follow the most prominent phenomena that accompanied the evolution of the use of Arabic language in the media with the development of these means and spread technically globally, and how divided researchers and linguists and intellectuals Arabs into two teams, each demanding what contradicts the other, in the matter The use of the Arabic language in the media, and the arguments of each team in the need to deal with the media as one of the pillars of the nation culturally, historically and civilized, in order to enhance its position and maintain unity, continued the research highlighted the positions of hard-lin
... Show MoreIncivility in nursing education can negatively affect the academic achievement. As there is no tool in Arabic to assess incivility among nursing students, there is a need for a valid and reliable tool.
This study aimed to investigate the psychometric properties of the Arabic version of the Incivility in Nursing Education- Revised (INE-R) survey.
Th
In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show MoreIn aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreThe research aimed to find the effectiveness of teaching impact of the reflex learning strategy on the fifth class female student achievement of the geography content material). The researcher adopted the null hypotheses (there are no statistically significant differences at (0,05) level between the women score mean of the experimental group student who has been taught by the cement material assigned by the reflex learning strategy, and that of the control group who have been taught by the traditional method on the achievement test. The researcher adopted the post-test experimental design to measure students’ achievement. The population of the present study has been limited to the fifth literary class female stud
... Show More