Drilling fluid properties and formulation play a fundamental role in drilling operations. The Classical water-based muds prepared from only the Syrian clay and water without any additives((Organic and industrial polymers) are generally poor in performance. Moreover, The high quantity of Syrian clay (120 gr / l) used in preparing drilling fluids. It leads to a decrease in the drilling speed and thus an increase in the time required to complete the drilling of the well. As a result, the total cost of drilling the well increased, as a result of an increase in the concentration of the solid part in the drilling fluid. In this context, our study focuses on the investigation of the improvement in drilling mud Prepared from the Syrian clay by reducing the clay concentration to (50 gr / L). And compensate for the remaining amount (70 gr / l) of clay by adding (natural and industrial polymers) The rheological properties and filtration are measured at different concentrations of polymers .. In light of the experiments, we determine the polymers' concentrations that gave good results in improving the flow properties and controlling the Filter. It is polymers that have given good results:، HEC، HEC and Xanthan Gum PAC and HEC، CMCHV، PolyAcryl Amid ، Xanthan Gum .
In this work, the antibacterial effectiveness of face masks made from polypropylene, against Candida albicans and Pseudomonas aeruginosa pathogenic was improved by soaking in gold nanoparticles suspension prepared by a one-step precipitation method. The fabricated nanoparticles at different concentrations were characterized by UV-visible absorption and showed a broad surface Plasmon band at around 520 nm. The FE-SEM images showed the polypropylene fibres highly attached with the spherical AuNPs of diameters around 25 nm over the surfaces of the soaked fibres. The Fourier Transform Infrared Spectroscopy (FTIR) of pure and treated face masks in AuNPs conform to the characteristics bands for the polypropylene bands. There are some differences
... Show MoreThe aim of this research is to assess the validity of Detailed Micro-Modeling (DMM) as a numerical model for masonry analysis. To achieve this aim, a set of load-displacement curves obtained based on both numerical simulation and experimental results of clay masonry prisms loaded by a vertical load. The finite element method was implemented in DMM for analysis of the experimental clay masonry prism. The finite element software ABAQUS with implicit solver was used to model and analyze the clay masonry prism subjected to a vertical load. The load-displacement relationship of numerical model was found in good agreement with those drawn from experimental results. Evidence shows that load-displacement curvefound from the finite element m
... Show MoreThis investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
This investigation aims to study some properties of lightweight aggregate concrete reinforced by mono or hybrid fibers of different sizes and types. In this research, the considered lightweight aggregate was Light Expanded Clay Aggregate while the adopted fibers included hooked, straight, polypropylene, and glass. Eleven lightweight concrete mixes were considered, These mixes comprised of; one plain concrete mix (without fibers), two reinforced concrete mixtures of mono fiber (hooked or straight fibers), six reinforced concrete mixtures of double hybrid fibers, and two reinforced concrete mixtures of triple hybrid fibers. Hardened concrete properties were investigated in this study. G
Wellbore instability is one of the most common issues encountered during drilling operations. This problem becomes enormous when drilling deep wells that are passing through many different formations. The purpose of this study is to evaluate wellbore failure criteria by constructing a one-dimensional mechanical earth model (1D-MEM) that will help to predict a safe mud-weight window for deep wells. An integrated log measurement has been used to compute MEM components for nine formations along the studied well. Repeated formation pressure and laboratory core testing are used to validate the calculated results. The prediction of mud weight along the nine studied formations shows that for Ahmadi, Nahr Umr, Shuaiba, and Zubair formations
... Show MoreMagneto-rheological (MR) Valve is one of the devices generally used to control the speed of Hydraulic actuator using MR fluid. The performance of valve depends on the magnetic circuit design. Present study deals with a new design of MR valve. The finite element analysis is carried out on this valve to optimize its design. The design of the magnetic circuit is accomplished by magnetic finite element software such as Finite Element Method Magnetic (FEMM). The Model dimensions of MR valve, material properties and the circuit properties of valve coil are taken into account. The results of analysis are presented in terms of magnetic strength and magnetic flux density. The valve can be operated with variable flow rate by varying the current. It i
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThe research addresses a fundamental Islamic jurisprudential Purposeful issue, which is (Sharia), and to indicate the impact of this on Islamic jurisprudence, deriving rulings and extracting purposes, and to repel the illusion that this issue is only doctrinal, and clarifying the aspects of similarities and links between them by explaining the origin of deriving the purposes of Islamic Law (Sharia) through the meanings and wisdom learned from the texts and the explanation of the rulings. The rulings of Islamic Law (Sharia) have urged bringing benefits and repelling harms, and that the path to do so is reason and its production. I began the research by defining the purposes of Islamic Law (Sharia), then defining the rule of rational right
... Show MoreNd:YAG laser pulses of 9 nanosecond pulse duration and operating wavelength at 1.06 μm, were utilized to drill high thermal conductivity and high reflectivity aluminum and copper foils. The results showed a dependence of drilled holes characteristics on laser power density and the number of laser pulses used. Drilled depth of 74 ϻm was obtained in aluminum at 11.036×108 W/cm2 of laser power density. Due to its higher melting point, copper required higher laser power density and/or larger number of laser pulses to melt, and a maximum depth of 25 μm was reached at 13.46×108 W/cm2 using single laser pulse.