Preferred Language
Articles
/
joe-1121
Load-settlement Behavior of Steel Piles in Different Sandy Soil Configurations
...Show More Authors

In the case where a shallow foundation does not satisfy with design requirements alone, the addition of a pile may be suitable to improve the performance of the foundation design. The lack of in-situ data and the complexity of the issues caused by lagging in the research area of pile foundations are notable. In this study, different types of piles were used under the same geometric conditions to determine the load-settlement relationships with various sandy soil relative densities. The ultimate pile capacity for each selected pile is obtained from a modified California Bearing Ratio (CBR) machine to be suitable for axial pile loading. Based on the results, the values of Qu for close-ended square pile were increased by 15.2, 19.3, and 9.1 % for different pile lengths of 100, 150, and 200 mm in comparison with the H-pile. At the same time, the open-ended square pile had a lower capacity in comparison with closed-ended square pile tested in medium sand. Also, in the dense sand, the values of Qu for close-ended square pile were increased by 49.7, 47.8, and 69.6% for the same pile length in comparison with the H-pile. Notably, sand's density has a significant effect on the ultimate load capacity for different types of piles.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Open Engineering
Field tests of grouted ground anchors in the sandy soil of Najaf, Iraq
...Show More Authors
Abstract<p>This article presents test results documentation for four grouted ground anchors embedded in sandy soil. Three anchors were trial, while one was a working anchor. One trial anchor is instrumented with eight resistance-type strain gauges glued on the corrugated pipe and embedded within the grouted body. An acceptance test was made for all anchors to determine the working load. Acceptance criteria suggested by the Post-Tensioning Institute were applied, and the working anchor did not pass the creep criterion, so it was taken out of service. The strain measurements indicated that the compression stresses were generated along the free length, while the tension stresses were generated alon</p> ... Show More
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Journal Of Engineering
Experimental and Theoretical Determination of Settlement of Shallow Footing on Liquefiable Soil
...Show More Authors

A high settlement may take place in shallow footing when resting on liquefiable soil if subjected to earthquake loading. In this study, a series of shaking table tests were carried out for shallow footing resting on sand soil. The input motion is three earthquake loadings (0.05g, 0.1g, and 0.2g). The study includes a reviewing of theoretical equations (available in literatures), which estimating settlement of footings due to earthquake loading, calibration, and verification of these equations with data from the shaking table test for improved soil by grouting and unimproved soil. It is worthy to note that the grouting materials considered in this study are the Bentonite and CKD slurries. A modification to the seismic set

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Effect of Saturation of Sandy Soil on the Displacement Amplitude of Soil Foundation System under Vibration
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displaceme

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Effect of Saturation of Sandy Soil on the Displacement Amplitude of Soil Foundation System under Vibration
...Show More Authors

In this study, the response and behavior of machine foundations resting on dry and saturated sand was investigated experimentally. A physical model was manufactured to simulate steady state harmonic load at different operating frequencies. The effect of relative density, depth of embedment, foundation area as well as the imposed harmonic load was investigated. It was found that the amplitude of displacement of the foundation increases with increasing the amplitude of dynamic force and operating frequency meanwhile it decreases with increasing the relative density of sand, degree of saturation, depth of embedment and contact area of footing. The maximum displacement was noticed at 33.34 to 41.67 Hz. The maximum displacement amplitude respons

... Show More
Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Experimental Investigation of Under Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>This paper presents an experimental study between uniform pile and different types of under-reamed pile, single bulb. The under-reamed piles are piles with enlarged bases that are suitable to resist considerable movement of the ground, filed up ground, soft clay, and loose sand which have advantages to increase the soil strength, uplift capacity, and decrease the displacement. In the present study, there are experimental analyze to performance the suitable under-reamed type under sinusoidal load from vertical vibration (motor-oscillator was mounted directly on the pile cap. The main finding of this work is that the pile capacity increases with the ream and that all stress values of so</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Numerical Analysis of Under-Reamed Pile Subjected to Dynamic Loading in Sandy Soil
...Show More Authors
Abstract<p>Under-reamed piles are piles with enlarged bases, which may be single bulb or multi bulbs. Such piles are suitable for resisting considerable soil movement of filed up ground, soft clay, and loose sand and have the advantages of increasing the soil strength and decreasing the displacement. In the present study, the finite element method was used to analyse the performance of a single pile with under-reamed bulbs of different shapes, that is, single cone, double cone, and half and full sphere, embedded in homogeneous, poorly graded sandy soil. The model of under-reamed pile was made of reinforced concrete and the bulb located at the middle of the embedded length of the pile. The dynami</p> ... Show More
View Publication Preview PDF
Scopus (21)
Crossref (17)
Scopus Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Heave Behavior of Granular Pile Anchor-Foundation System (GPA-Foundation System) in Expansive Soil
...Show More Authors

Granular  Pile  Anchor  (GPA)  is  one  of  the  innovative  foundation  techniques,  devised  for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Behavior of Reinforced Concrete Columns Subjected to Axial Load and Cyclic Lateral Load
...Show More Authors

Columns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and  deformations, caused by  spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and  . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co

... Show More
View Publication Preview PDF
Publication Date
Wed May 31 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Corrosion Behavior of Different Gauges of Stainless Steel Wire Use in Removable Partial Denture and Orthodontics Appliances
...Show More Authors

  Wires are commonly used for the construction of orthodontic appliances and occasionally as wrought clasps and rests on partial dentures.           The corrosion resistance is the most important properties of dental alloy. Corrosion process reported to cause a numerous adverse effects on both living tissue and restoration .The conditions in the mouth are very suitable for the occurrence of corrosion. The main objective of this study was to evaluate the corrosion behavior of different gauges of stainless steel wire in artificial saliva .Four gauges of dental stainless steel wire used in orthodontic and removable partial denture were used in this study 0.6mm.,0.7mm.,0 .8mm.&1.0mm.

... Show More
View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
PHYSICAL MODEL OF KEROSENE PLUME MIGRATION IN AN UNSATURATED ZONE OF THE SANDY SOIL
...Show More Authors

Physical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.

View Publication Preview PDF
Crossref