Preferred Language
Articles
/
joe-1076
Artificial Neural Network (ANN) for Prediction of Viscosity Reduction of Heavy Crude Oil using Different Organic Solvents
...Show More Authors

The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests  and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a  heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage  (5, 10 and  20 wt.% )  of  (n-heptane, toluene, and a mixture of  different ratio toluene / n-Heptane)  at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Compared with Genetic Algorithm Fast – MCD – Nested Extension and Neural Network Multilayer Back propagation
...Show More Authors

The study using Nonparametric methods for roubust to estimate a location and scatter it is depending  minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .       

It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Basra Journal Of Science
Organic Field Effect Transistor Based on P3HT with Two Different Gate Dielectrics
...Show More Authors

The electrical performance of bottom-gate/top source-drain contact for p-channel organic field-effect transistors (OFETs) using poly(3-hexylthiophene) (P3HT) as an active semiconductor layer with two different gate dielectric materials, Polyvinylpyrrolidone (PVP) and Hafnium oxide (HfO2), is investigated in this work. The output and transfer characteristics were studied for HfO2, PVP and HfO2/PVP as organic gate insulator layer. Both characteristics show a high drain current at the gate dielectric HfO2/PVP equal to -0.0031A and -0.0015A for output and transfer characteristics respectively, this can be attributed to the increasing of the dielectric capacitance. Transcondactance characteristics also studied for the three organic mater

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Different Development Scenarios to Increase the Production Rates for Fauqi Oil Field Southeastern Iraq
...Show More Authors

The Fauqi field is located about 50Km North-East Amara town in Missan providence in Iraq. Fauqi field has 1,640 MMbbl STOIIP, which lies partly in Iran. Oil is produced from both Mishrif and Asmari zones. Geologically, the Fauqi anticline straddles the Iraqi/Iranian border and is most probably segmented by several faults. There are several reasons leading to drilling horizontal wells rather than vertical wells. The most important parameter is increasing oil recovery, particularly from thin or tight reservoir permeability. The Fauqi oil field is regarded as a giant field with approximately more than 1 billion barrels of proven reserves, but it has recently experienced low production rate problems in many of its existing wells. This study

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 10 2018
Journal Name
Day 3 Wed, December 12, 2018
Experimental Comparison between WASP and LSASF in Bartlesville Sandstone Reservoir Cores Bearing Heavy Oil
...Show More Authors

Low salinity (LS) water flooding is a promising EOR method which has been examined by many experimental studies and field pilots for a variety of reservoirs and oils. This paper investigates applying LS flooding to a heavy oil. Increasing the LS water temperature improves heavy oil recovery by achieving higher sweep efficiency and improving oil mobility by lowering its viscosity. Steam flooding projects have reported many problems such as steam gravity override, but override can be lessened if the steam is is alternated with hot LS water. In this study, a series of reservoir sandstone cores were obtained from Bartlesville Sandstone (in Eastern Kansas) and aged with heavy crude oil (from the same reservoir) at 95°C for 45 days. Five reservo

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (17)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Experimental Investigation of Mass Transfer for Copper Reduction by Weight Difference Technique
...Show More Authors

An experimental analysis was included to study and investigate the mass transport behavior of cupric ions reduction as the main reaction in the presence of 0.5M H2SO4 by weight difference technique (WDT). The experiments were carried out by electrochemical cell with a rotating cylinder electrode as cathode. The impacts of different operating conditions on mass transfer coefficient were analyzed such as rotation speeds 100-500 rpm, electrolyte temperatures 30-60 , and cupric ions concentration 250-750 ppm. The order of copper reduction reaction was investigated and it shows a first order reaction behavior. The mass transfer coefficient for the described system was correlated with the aid of dimensionless groups as fo

... Show More
View Publication Preview PDF
Publication Date
Wed May 17 2023
Journal Name
Journal Of Engineering
Multicomponent Biosorption of Heavy Metals Using Fluidized Bed of Algal Biomass
...Show More Authors

This paper aims to study the biosorption for removal of lead, cadmium, copper and arsenic ions using algae as a biosorbent. A series of experiments were carried out to obtain the breakthrough data in a fluidized bed reactor. The minimum fluidization velocities of beds were found to be 2.27 and 3.64 mm/s for mish sizes of 0.4-0.6 and 0.6-1 mm diameters, respectively. An ideal plug flow model has been adopted to characterize the fluidized bed reactor. This model has been solved numerically using MATLAB version 6.5. The results showed a well fitting with the experimental data. Different operating conditions were varied: static bed height, superficial velocity and particle diameter. The breakthrough curves were plotted for each metal. Pb2+ s

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Case Studies In Chemical And Environmental Engineering
Optimization of photocatalytic process with SnO2 catalyst for COD reduction from petroleum refinery wastewater using a slurry bubble photoreactor
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (13)
Crossref (6)
Scopus Crossref
Publication Date
Tue Sep 03 2019
Journal Name
Eastern-european Journal Of Enterprise Technologies
Prediction of spot welding parameters using fuzzy logic controlling
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref