The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio toluene / n-Heptane) at constant temperature. Experimentally the higher viscosity reduction was about from 135.6 to 26.33 cP when the mixture of toluene/heptane (75/25 vol. %) was added. The input parameters for the model were solvent type, wt. % of solvent, RPM and shear rate, the results have been demonstrated that the proposed model has superior performance, where the obtained value of R was greater than 0.99 which confirms a good agreement between the correlation and experimental data, the predicate for reduced viscosity and DVR was with accuracy 98.7%, on the other hand, the μ and DVR% factors were closer to unity for the ANN model.
The effects of essential oilNigella sativa and Menthawas study on the chemical, microbial and sensory properties for soft white cheese that produced from it during storage at 0, 7 and 14 days .The results show significantly percent decrease in moisture for all samplesand maximum decrease was at the latest storage period for all them .The reduced in moisture was accompanied with increase in percentage of protein and fat during of storage period for all samples.
The control sample showed increased in bacterial logarithmic for total count bacterial, coliform, Staphylococcus aureus, proteolytic bacteria, lipolytic bacteria and mold and yeasts during of storage period , the highest results showed at the latest storage period 14days, it w
The experiment aimed to compare different methods of measuring the Feed pellet durability through the effect of pellet die speeds and the particle size (mill sieve holes diameter). Feed pellet durability was studied in four different ways: pellet direct measurement (%), pellet lengths (%), pellet water absorption (%), pellet durability by drop box device (%), pellet durability by air pressure device (%). Three pellet die speeds 280, 300, and 320 rpm, three mill sieve holes diameter 2, 4, and 6 mm, have been used. The results showed that increasing the pellet die speeds from 280 to 300 then to 320 rpm led to a significant decrease in the feed pellet durability by direct measurement, drop box device, and air pressure device, while pel
... Show MoreThe solution gas-oil ratio is an important measurement in reservoir engineering calculations. The correlations are used when experimental PVT data from particular field are missing. Additional advantages of the correlations are saving of cost and time.
This paper proposes a correlation to calculate the solution gas -oil ratio at pressures below bubble point pressure. It was obtained by multiple linear regression analysis of PVT data collected from many Iraqi fields.
In this study, the solution gas-oil ratio was taken as a function of bubble point pressure, stock tank oil gravity, reservoir pressure, reservoir temperature and relative gas density.
The construction of the new correlation is depending on thirty seven PVT reports th
This paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Abstract
Coronavirus has affected many people around the world and caused an increase in the number of hospitalized patients and deaths. The prediction factor may help the physician to classify whether the patient needs more medical attention to decrease mortality and worsening of symptoms. We aimed to study the possible relationship between C reactive protein level and the severity of symptoms and its effect on the prognosis of the disease. And determine patients who require closer respiratory monitoring and more aggressive supportive therapies to avoid poor prognosis. The data was gathered using medical record data, the patient's medical history, and the onset of symptoms, as well as a blood sample to test the
... Show More