Normal concrete is weak against tensile strength, has low ductility, and also insignificant resistance to cracking. The addition of diverse types of fibers at specific proportions can enhance the mechanical properties as well as the durability of concrete. Discrete fiber commonly used, has many disadvantages such as balling the fiber, randomly distribution, and limitation of the Vf ratio used. Based on this vision, a new technic was discovered enhancing concrete by textile-fiber to avoid all the problems mentioned above. The main idea of this paper is the investigation of the mechanical properties of SCC, and SCM that cast with 3D AR-glass fabric having two different thicknesses (6, 10 mm), and different layers (1,2 layers). As well as micro-steel fiber with 1.25% volume fraction was used. Sixteen rectangular reinforced concrete beam specimens have been tested to study the behavior of their flexural strength. The results concluded that utilizing 3D-TFs with mortar mixture gave significantly higher enhancement for the load-carrying capacity than the concrete mixture. The utilization of 3D-TFs and micro-steel fiber together in the SCM mix gave better results. The stiffness of the specimens was improved with increasing the thickness and the number of textile fiber layers.
<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but
... Show MoreModified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical
... Show MoreThe work in this paper focuses on the experimental confirming of the losses in photonic crystal fibers (PCF) on the transmission of Q-switched Nd:YAG laser. First HC-PCF was evacuated to 0.1 mbar then the microstructure fiber (PCF) was filled with He gas & gas. Second the input power and output power of Q-switched Nd:YAG laser was measured in hollow core photonic bandgap fiber (HCPCF). In this work loss was calculated in the hollow core photonic crystal fiber (HCPCF) filled with air then N2, and He gases respectively. It has bean observed that the minimum loss obtained in case of filling (HC-PCF) with He gas and its equal to 15.070 dB/km at operating wavelength (1040-1090) nm.
I
In this study, optical fibers were designed and implemented as a chemical sensor based on surface plasmon resonance (SPR) to estimate the age of the oil used in electrical transformers. The study depends on the refractive indices of the oil. The sensor was created by embedding the center portion of the optical fiber in a resin block, followed by polishing, and tapering to create the optical fiber sensor. The tapering time was 50 min. The multi-mode optical fiber was coated with 60 nm thickness gold metal. The deposition length was 4 cm. The sensor's resonance wavelength was 415 nm. The primary sensor parameters were calculated, including sensitivity (6.25), signal-to-noise ratio (2.38), figure of merit (4.88), and accuracy (3.2)
... Show MoreUnder cyclic loading, aluminum alloys exhibit less fatigue life than steel alloys of similar strength and this is considered as Achilles's heel of such alloys. A nanosecond fiber laser was used to apply high speed laser shock peening process on thin aluminum plates in order to enhance the fatigue life by introducing compressive residual stresses. The effect of three working parameters namely the pulse repetition rate (PRR), spot size (ω) and scanning speed (v) on limiting the fatigue failure was investigated. The optimum results, represented by the longer fatigue life, were at PRR of 22.5 kHz, ω of 0.04 mm and at both v's of 200 and 500 mm/sec. The research yielded significant results represented by a maximum percentage increase in the fa
... Show MoreThe current work studies the effect of adding chopped carbon fiber (CCF) on gypsum plaster properties (precisely the compressive strength and the modulus of rupture). The research plan consists of using six mixes of gypsum plaster; these mixes are divided into two groups according to the (Water/Gypsum) ratios (0.5 & 0.6). Each group was divided into three subgroups according to CCF volume fraction (Vf): 0.0%, 0.2% and 0.4%. Three cubic (50×50×50) mm and three prismatic (40×40×160) mm samples were performed for each mix. It was found that, the addition of CCF to the gypsum plaster mixes increases both the compressive strength and the modulus of rupture for both (W/G) ratios, an
This paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate – thus modeling the warping of transverse crosssections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of
Background: The aim of this study was to measure the radiopacity (RO) of modified microhybrid composite resins by adding 2 types of nanofillers (Zinc Oxide and Calcium Carbonate) in two concentrations 3% and 5% and comparing them to unmodified microhybrid composite resins and to nanofilled composite resin. Materials and Methods: Two types of composite resin were used (Microhybrid composite MH Quadrent anterior shine and Nanofilled composite resin Filtek Z350 XT), for each tested group five disk-shaped specimens (1-mm-thick and 15 mm diameter) were fabricated. The material samples were radiographed together with the aluminum step wedge. The density of the specimens was determined with a transmission densitometer and was expressed in term of
... Show MoreBuckling analysis of composite laminates for critical thermal (uniform and linear) and mechanical loads is reported here. The objective of this work is to carry out theoretical investigation of buckling analysis of composite plates under thermomechanical loads, and experimental investigation under mechanical loads. The analytical investigation involved certain mathematical preliminaries, a study of equations of orthotropic elasticity for classical laminated plate theory (CLPT), higher order shear deformation plate theory (HSDT) , and numerical analysis (Finite element method), then the equation of motion are derived and solved using Navier method and Levy method for symmetric and anti-symmetric cross-ply and angle-ply laminated plates t
... Show MoreIn this study, industrial fiber and polymer mixtures were used for high-speed impact (ballistic) applications where the effects of polymer (epoxy), polymeric
mixture (epoxy + unsaturated polyester), synthetic rubber (polyurethane), Kevlar fiber, polyethylene fiber (ultra High molecular weight) and carbon fiber.
Four successive systems of samples were prepared. the first system component made of (epoxy and 2% graphene and 20 layer of fiber), then ballistic test was
applied, the sample was successful in the test from a distance of 7 m. or more than, by using a pistol personally Glock, Caliber of 9 * 19 mm. The second
system was consisting of (epoxy, 2% graphene, 36 layers of fiber and one layer of hard rubber), it was succeeded