Preferred Language
Articles
/
joe-1064
Impact of Twitter Sentiment Related to Bitcoin on Stock Price Returns
...Show More Authors

Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM deep learning model. By applying Pearson's correlation, we found that the sentiment of the day (d) had a positive effect on the future Bitcoin returns on the next day (d+1). The prediction accuracy of the linear regression model for the next day's revenue was 78%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Apr 04 2022
Journal Name
Journal Of Educational And Psychological Researches
Towards a proposed conception of the role of the professional practice specialist for social work In the field of social care for corona patients (A field study at the Iraqi Ministry of Social Affairs)
...Show More Authors

This study aimed to identidy the role of a professional social worker practice specialist in the field of social care for Corona patients, in light of some demographic variables such as (gender, marital status, economic status,), through a field study at the Iraqi Ministry of Social Affairs. A random sample of (50) social workers in the Iraqi Ministry of Social Affairs in various places affiliated with the ministry was chosen. a questionnaire developed by the researcher about the role of the social worker in the field of social care for Corona patients was administered to the study sample to collect the needed data. The results showed that there is a positive statistically significant correlation relationship at the level (0.01) between

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Communications In Computer And Information Science
Automatically Recognizing Emotions in Text Using Prediction by Partial Matching (PPM) Text Compression Method
...Show More Authors

In this paper, we investigate the automatic recognition of emotion in text. We perform experiments with a new method of classification based on the PPM character-based text compression scheme. These experiments involve both coarse-grained classification (whether a text is emotional or not) and also fine-grained classification such as recognising Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method significantly outperforms the traditional word-based text classification methods. The results show that the PPM compression based classification method is able to distinguish between emotional and nonemotional text with high accuracy, between texts invo

... Show More
View Publication
Scopus (1)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Nov 21 2017
Journal Name
Lecture Notes In Computer Science
Emotion Recognition in Text Using PPM
...Show More Authors

In this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2016
Journal Name
Al-kindy College Medical Journal
A Comparison of Sagittal Sections of Short T1inversion Recovery and T2 Weighted Fast Spin Echo Magnetic Resonance Sequences for Detection of Multiple Sclerosis Spinal Cord Lesions
...Show More Authors

Background: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
The effect of losing one view of the independent variableAnd its location in simple regression analysis
...Show More Authors

The objective of the research , is to shed light on the most important treatment of the problem of missing values of time series data and its influence in simple linear regression. This research deals with the effect of the missing values in independent variable only. This was carried out by proposing missing value from time series data which is complete originally and testing the influence of the missing value on simple regression analysis of data of an experiment related with the effect of the quantity of consumed ration on broilers weight for 15 weeks. The results showed that the missing value had not a significant effect as the estimated model after missing value was consistent and significant statistically. The results also

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Al-kindy College Medical Journal
The Role of the Use of Low Molecular Weight Heparin in the Prevention of Deep Venous Thrombosis after Total Knee Arthroplasty
...Show More Authors

Background A prospective clinical study was
performed to compare the efficacy of the use of lowmolecular-
weight heparin group (enoxparin group)
with control group in the prevention of deep-vein
thrombosis after total knee arthroplasty.
Aim of the study: to assess the prevalence of DVT
after total knee arthroplasty and evaluate the
importance of the use of low molecular weight
heparin in the prevention of this DVT.
Methods Thirty-three patients undergoing total
knee arthroplasty were randomly divided into two
groups. One group consisted of 12 patients who
received no prophylaxis with an anticoagulant (the
control group), other group consisted of 21 patients
who received the low-molecular-weight h

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Iraqi Journal Of Science,
Detection of human leukocyte antigen and celiac disease auto antibodies in serum of patients with multiple sclerosis
...Show More Authors

To determine the important pathogenic role of celiac disease in triggering several autoimmune disease, thirty patients with Multiple Sclerosis of ages (22-55) years have been investigated and compared with 25 healthy individuals. All the studied groups were carried out to measure anti-tissue transglutaminase antibodies IgA IgG by ELISA test, anti-reticulin antibodies IgA and IgG, and anti-endomysial antibodies IgA and IgG by IFAT. There was a significant elevation in the concentration of anti-tissue transglutaminase antibodies IgA and IgG compared to control groups (P≤0.05), there was 4(13.33%) positive results for anti-reticulin antibodies IgA and IgG , 3(10%) positive results for anti-endomysial antibodies IgA and IgG . There were 4 pos

... Show More
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 28 2021
Journal Name
Journal Of The College Of Education For Women
The Developmental Role of Social Work in Reducing Social Extremism:A Field Study in Baghdad University-College of Mass Communication as a Model: محمد حميد علوان
...Show More Authors

This study deals with the role that social work profession plays in all its fields to reduce social extremismat home, or school or within society. The study aims to: examine the historical roots of social work in the Iraqi society, investigate the objectives of the developmental role of social work, review the theories of social extremism, its characteristics, and causes, and to analyze the developmental role of social work to limit social extremism. To meet the objectives of the study, a descriptive analytical approach has been adopted. It involves using the social sampling survey method, i.e., a questionnaire tool in the University of Baghdad community-College of Media. The sample was randomly selected to include (100) students from th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
International Journal Of Advanced Technology And Engineering Exploration
Breast cancer survival rate prediction using multimodal deep learning with multigenetic features
...Show More Authors

Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep

... Show More
View Publication Preview PDF
Scopus Crossref