Twitter is becoming an increasingly popular platform used by financial analysts to monitor and forecast financial markets. In this paper we investigate the impact of the sentiments expressed in Twitter on the subsequent market movement, specifically the bitcoin exchange rate. This study is divided into two phases, the first phase is sentiment analysis, and the second phase is correlation and regression. We analyzed tweets associated with the Bitcoin in order to determine if the user’s sentiment contained within those tweets reflects the exchange rate of the currency. The sentiment of users over a 2-month period is classified as having a positive or negative sentiment of the digital currency using the proposed CNN-LSTM deep learning model. By applying Pearson's correlation, we found that the sentiment of the day (d) had a positive effect on the future Bitcoin returns on the next day (d+1). The prediction accuracy of the linear regression model for the next day's revenue was 78%.
Radon is the most dangerous natural radioactive component affecting the human population, since it is a radioactive gas that results from the decomposition process of uranium deposits in soil, rocks, and water, and it is damaging both humans and the ecosystem. The radon concentrations and exhalation rate in soil samples from various locations were determined using a passive approach with a CR-39 (CR-39 is Columbia Resin #39; it is allyl diglycol carbonate C12H18O7) detector in Amiriya region in Baghdad Governorate. The average values of radon concentrations are ranged from 47.3 to 54.2 Bq·m−3. From the obtained results, we can conclude that the values of all studied locations are
Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreIn this study, the radon gas concentration as well as the annual effective dose in leaves of the Malvasylvestris (Khabbaz) plant used in the traditional treatment and as food in Iraq, for this, it is necessary to evaluate the concentrations radon gas, which were measured using solid state nuclear track detectors (SSNTDs) CR-39 technique. The concentration and annual effective dose in samples were collected from Baghdad city ranged from minimum to maximum value 15.815 , 0.498 , 54.445 , 1.717 respectively, while the values of concentration and annual effective dose in a sample collected from Karbala are 15.297 ,0.482 . These values of concentration and annual effective dose less were compared with th
... Show MoreBackground: The world is in front of two emerging problems being scarceness of virgin re-sources for bioactive materials and the gathering of waste production. Employment of the surplus waste in the mainstream production can resolve these problems. The current study aimed to prepare and characterize a natural composite CaO-SiO2 based bioactive material derived from naturally sustained raw materials. Then deposit this innovative novel bioactive coating composite materials overlying Yttria-stabilized tetragonal zirconia substrate. Mate-rials and method; Hen eggshell-derived calcium carbonate and rice husk-derived silica were extracted from natural resources to prepare the composite coating material. The manufac-tured powder was characterized
... Show MoreA spectrophotometric- reverse flow injection analysis (rFIA) method has been proposed for the determination of Nitrazepam (NIT) in pure and pharmaceutical preparations. The method is based upon the coupling reaction of NIT with a new reagent O-Coumaric acid (OCA) in the presence of sodium periodate in an aqueous solution. The blue color product was measured at 632 nm. The variation (chemical and physical parameters) related with reverse flow system were estimated. The linearity was over the range 15 - 450 µg/mL of NIT with detection limits and limit of quantification of 3.425 and 11.417 µg mL-1 NIT,respectively. The sample throughput of 28 samples
... Show MoreThe population of Ephemeroptera was studied in three selected stations of Rawanduz River (Gali Ali Beg water fall, Rawanduz River and after the junction of these two waters) during the three seasons of spring, summer and autumn in 2016. In addition,sixteen physicochemical parameters (pH, EC, turbidity, DO, BOD5, NO3, TDN, TDP, HCO3-, Hardness, Ca2+, Mg2+, Na+, K+, Cl-, SO42-, Na% and SAR) of water in these stations were estimated and used to calculate the Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI). Eleven species of aquatic insects were identified,which belong to four families of th
... Show MoreThis study involved the treatment of textile wastewater contaminated with direct blue 15 dye (DB15) using a heterogeneous photo-Fenton-like process. Bimetallic iron/copper nanoparticles loaded on bentonite clay were used as heterogeneous catalysts and prepared via liquid-phase reduction method using eucalyptus leaves extract (E-Fe/Cu@BNPs). Characterization methods were applied to resultant particles (NPs), including SEM, BET, and FTIR techniques. The prepared NPs were found with porous and spherical shapes with a specific surface area of particles was 28.589 m2/g. The effect of main parameters on the photo-Fenton-like degradation of DB15 was investigated through batch and continuous fixed-bed systems. In batch mode, pH, H2O2 dosage, DB15 c
... Show More