Preferred Language
Articles
/
joe-1039
Characterization Performance of Monocrystalline Silicon Photovoltaic Module Using Experimentally Measured Data
...Show More Authors

Solar photovoltaic (PV) system has emerged as one of the most promising technology to generate clean energy. In this work, the performance of monocrystalline silicon photovoltaic module is studied through observing the effect of necessary parameters: solar irradiation and ambient temperature. The single diode model with series resistors is selected to find the characterization of current-voltage (I-V) and power-voltage (P-V) curves by determining the values of five parameters ( ). This model shows a high accuracy in modeling the solar PV module under various weather conditions. The modeling is simulated via using MATLAB/Simulink software. The performance of the selected solar PV module is tested experimentally for different weather data (solar irradiance and ambient temperature) that is gathered from October 2017 to April 2018 in the city of Baghdad. The collected data is recorded for the entire months during the time which is limited between 8:00 AM and 1:00 PM. This work demonstrates that the change in a cell temperature is directly proportional with the PV module current, while it is inversely proportional with the PV module voltage. Additionally, the output power of a PV module increases with decreasing the solar module temperature. Furthermore, the Simulink block diagram is used to evaluate the influence of weather factors on the PV module temperature by connecting to the MATLAB code. The best value from the results of this work was in March when the solar irradiance was equal to 1000 W/m2 and the results were:

Isc,exp=3.015, Isc,mod=3.25 , RE=7.79 and Voc,exp=19.67 ,Voc,mod=19.9 ,RE=1.1

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Nov 29 2024
Journal Name
The Iraqi Geological Journal
Data Driven Approach for Predicting Pore Pressure of Oil and Gas Wells, Case Study of Iraq Southern Oilfields
...Show More Authors

Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
The effect of left ventricle ischemia severity on cardiac performance appeared on ejection fraction using radioactive TC <sup>99m</sup> MIBI in comparison with echocardiography
...Show More Authors
Abstract<p>Ischemic heart disease is a major causes of heart failure. Heart failure patients have predominantly left ventricular dysfunction (systolic or diastolic dysfunction, or both). Acute heart failure is most commonly caused by reduced myocardial contractility, and increased LV stiffness. We performed echocardiography and gated SPECT with Tc<sup>99m</sup> MIBI within 263 patients and 166 normal individuals. Left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) were measured. For all degrees of ischemia, there was a significant difference between ejection fraction values measured by SPECT and echo</p> ... Show More
View Publication
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Proceedings Of The International Astronomical Union
The infrared <i>K</i>-band identification of the DSO/G2 source from VLT and Keck data
...Show More Authors
Abstract<p>A fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (Sgr A*) on a presumably elliptical orbit. VLT <italic>K<sub>s</sub></italic>-band and Keck <italic>K</italic>′-band data result in clear continuum identifications and proper motions of this ∼19<sup><italic>m</italic></sup> Dusty S-cluster Object (DSO). In 2002-2007 it is confused with the star S63, but free of confusion again since 2007. Its near-infrared (NIR) colors and a comparison to other sources in the field speak in favor of the DSO being an IR excess star with photospheric continuum emission at 2 microns than a</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Dec 28 2022
Journal Name
Al–bahith Al–a'alami
Content of Data Journalism in Security Topics - Security Media Cell Model Research extracted from a master’s thesis
...Show More Authors

This paper aims at the analytical level to know the security topics that were used with data journalism, and the expression methods used in the statements of the Security Media Cell, as well as to identify the means of clarification used in data journalism. About the Security Media Cell, and the methods preferred by the public in presenting press releases, especially determining the strength of the respondents' attitude towards the data issued by the Security Media Cell. On the Security Media Cell, while the field study included the distribution of a questionnaire to the public of Baghdad Governorate. The study reached several results, the most important of which is the interest of the security media cell in presenting its data in differ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
...Show More Authors
Abstract<p>With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jul 01 2008
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Analysis of Data Obtained From Chromosomal Studies Performed During the Period from 2000-2007 A Retrospective Study
...Show More Authors

Background: Generally, genetic disorders are a leading cause of spontaneous abortion, neonatal death, increased morbidity and mortality in children and adults as well. They a significant health care and psychosocial burden for the patient, the family, the healthcare system and the community as a whole. Chromosomal abnormalities occur much more frequently than is generally appreciated. It is estimated that approximately 1 of 200 newborn infants had some form of chromosomal abnormality. The figure is much higher in fetuses that do not survive to term. It is estimated that in 50% of first trimester abortions, the fetus has a chromosomal abnormality. Aim of the study: This study aims to shed some light on the results of chromosomal studies per

... Show More
View Publication
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Physics: Conference Series
Data Processing, Storage, and Analysis: Applying Computational Procedures to the Case of a Falling Weight Deflectomer (FWD)
...Show More Authors

In the field of civil engineering, the adoption and use of Falling Weight Deflectometers (FWDs) is seen as a response to the ever changing and technology-driven world. Specifically, FWDs refer to devices that aid in evaluating the physical properties of a pavement. This paper has assessed the concepts of data processing, storage, and analysis via FWDs. The device has been found to play an important role in enabling the operators and field practitioners to understand vertical deflection responses upon subjecting pavements to impulse loads. In turn, the resultant data and its analysis outcomes lead to the backcalculation of the state of stiffness, with initial analyses of the deflection bowl occurring in conjunction with the measured or assum

... Show More
Scopus Crossref
Publication Date
Sat Mar 26 2022
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
The Role of Big Data applications in forecasting corporate bankruptcy: Field analysis in the Saudi Business Environment
...Show More Authors

This study aimed to investigate the role of Big Data in forecasting corporate bankruptcy and that is through a field analysis in the Saudi business environment, to test that relationship. The study found: that Big Data is a recently used variable in the business context and has multiple accounting effects and benefits. Among the benefits is forecasting and disclosing corporate financial failures and bankruptcies, which is based on three main elements for reporting and disclosing that, these elements are the firms’ internal control system, the external auditing, and financial analysts' forecasts. The study recommends: Since the greatest risk of Big Data is the slow adaptation of accountants and auditors to these technologies, wh

... Show More
View Publication Preview PDF