Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in Mishrif formation in Nasiriya oil field for the selected wells. The mean square error for the results obtained from the ANFIS model was 0.015. The model was trained and simulated using MATLAB and Simulink platform. Laboratory measurements were conducted on core samples selected from two wells. Ultrasonic device was used to measure the transit time of compressional and shear waves and to compare these results with log records. Ten wells in Nasiriya oil field had been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software and based on the las files and log records provided. The average rate of penetration of the studied wells was determined and listed against depth with the average dynamic elastic properties and fed into the fuzzy system. The average values of bulk modulus for the ten wells ranged between (20.57) and (27.57) . For shear modulus, the range was from (8.63) to (12.95) GPa. Also, the Poisson’s ratio values varied from (0.297) to (0.307). For the first group of wells (NS-1, NS-3, NS-4, NS-5, and NS-18), the ROP values were taken from the drilling reports and the lowest ROP was at the bottom of the formation with a value of (3.965) m/hrs while the highest ROP at the top of the formation with a value (4.073) m/hrs. The ROP values predicted by the ANFIS for this group were (3.181) m/hrs and (4.865) m/hrs for the lowest and highest values respectively. For the second group of wells (NS-9, NS-15, NS-16, NS-19, and NS-21), the highest ROP obtained from drilling reports was (4.032) m/hrs while the lowest value was (3.96) m/hrs. For the predicted values by ANFIS model were (2.35) m/hrs and (4.3) m/hrs for the lowest and highest ROP values respectively.
— In light of the pandemic that has swept the world, the use of e-learning in educational institutions has become an urgent necessity for continued knowledge communication with students. Educational institutions can benefit from the free tools that Google provide and from these applications, Google classroom which is characterized by ease of use, but the efficiency of using Google classroom is affected by several variables not studied in previous studies Clearly, this study aimed to identify the use of Google classroom as a system for managing e-learning and the factors affecting the performance of students and lecturer. The data of this study were collected from 219 members of the faculty and students at the College of Administra
... Show MoreSpray pyrolysis technique was used to make Carbon60-Zinc oxide (C60-ZnO) thin films, and chemical, structural, antibacterial, and optical characterizations regarding such nanocomposite have been done prior to and following treatment. Fullerene peaks in C60-ZnO thin films are identical and appear at the same angles. Following the treatment of the plasma, the existence regarding fullerene peaks in the thin films investigated suggests that the crystallographic quality related to C60-ZnO thin films has enhanced. Following plasma treatment, field emission scanning electron microscopy (FESEM) images regarding a C60-ZnO thin film indicate that both zinc oxide and fullerene particles had shrunk in the size and have an even distribution. In addition
... Show MoreFlexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreSilver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm
... Show MoreIn this work ,pure and doped(CdO)thin films with different concentration of V2O5x (0.0, 0.05, 0.1 ) wt.% have been prepared on glass substrate at room temperature using Pulse Laser Deposition technique(PLD).The focused Nd:YAG laser beam at 800 mJ with a frequency second radiation at 1064 nm (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface At first ,The pellets of (CdO)1-x(V2O5)x at different V2O5 contents were sintered to a temperature of 773K for one hours.Then films of (CdO)1-x(V2O5)x have been prepared.The structure of the thin films was examined by using (XRD) analysis..Hall effect has been measured in orded to know the type of conductivity, Finally the solar cell and the effici
... Show MorePreparation of Carboxy Methylated mPEG-Block-(4-Dodecyl Anilide) Copolymers and Their Visco Metric and Surface Tension Properties in THF