Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in Mishrif formation in Nasiriya oil field for the selected wells. The mean square error for the results obtained from the ANFIS model was 0.015. The model was trained and simulated using MATLAB and Simulink platform. Laboratory measurements were conducted on core samples selected from two wells. Ultrasonic device was used to measure the transit time of compressional and shear waves and to compare these results with log records. Ten wells in Nasiriya oil field had been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software and based on the las files and log records provided. The average rate of penetration of the studied wells was determined and listed against depth with the average dynamic elastic properties and fed into the fuzzy system. The average values of bulk modulus for the ten wells ranged between (20.57) and (27.57) . For shear modulus, the range was from (8.63) to (12.95) GPa. Also, the Poisson’s ratio values varied from (0.297) to (0.307). For the first group of wells (NS-1, NS-3, NS-4, NS-5, and NS-18), the ROP values were taken from the drilling reports and the lowest ROP was at the bottom of the formation with a value of (3.965) m/hrs while the highest ROP at the top of the formation with a value (4.073) m/hrs. The ROP values predicted by the ANFIS for this group were (3.181) m/hrs and (4.865) m/hrs for the lowest and highest values respectively. For the second group of wells (NS-9, NS-15, NS-16, NS-19, and NS-21), the highest ROP obtained from drilling reports was (4.032) m/hrs while the lowest value was (3.96) m/hrs. For the predicted values by ANFIS model were (2.35) m/hrs and (4.3) m/hrs for the lowest and highest ROP values respectively.
In this study, experimental mortar combinations with 1% micro steel fibers, were examined to create geopolymer mortars. To test the effect of the fibers on the mortar's resistance, the geopolymer mortar was designed with various proportions of more environmentally friendly materials fly ash and slag. The percentage of fly ash by weight was 50, 60, and 70% of the slag. The best results were obtained when a 50:50 ratio of fly ash and slag were mixed with 1% micro steel fibers. The results showed that the mixtures containing fibers performed better in the considered tests (toughness index, ductility index, and resilience index). In the impact resistance test, the mixture contained 50% fly ash by weight of the slag with a temperature of
... Show MoreThe aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show MoreFilms of pure polystyrene (ps) and doped by bromothymol blue material with percentages(4%) prepared by using casting technique in room temperature , the absorption and transmission spectra has been recorded in the wavelength rang (200-900)nm and calculated refractive index , reflectivity, real and imaginary parts of dielectric constant and extinction coefficient . this study has been done by recording the absorption and transmission spectra by using spectrophotometer .
This work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.
... Show MoreIn this work, yttrium oxide particles (powder) reinforced AL-Si matrix composites (Y2O3/Al-Si) and Chromium oxide particles reinforced AL-Si matrix composites (Cr2O3/AL-Si) were prepared by direct squeeze casting. The volume percentages of yttrium oxide used are (4, 8.1, 12.1, 16.1 vol %) and the volume percentages of the chromium oxide particles used are (3.1, 6.3, 9.4, 12.5 vol. %). The parameters affecting the preparation of Y2O3/Al-Si and Cr2O3/AL-Si composites by direct squeeze casting process were studied. The molten Al-Si alloy with yttrium oxide particles or with chromium oxide particles was stirred again using an electrical stirrer at speed 500 rpm and the molten alloy was poured into the squeeze die cavity. Th
... Show MoreA nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been
... Show MoreThe composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector-borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that ama
... Show MoreThe ground state properties including the density distributions of the neutrons, protons and matter as well as the corresponding root mean square (rms) radii of proton-rich halo candidates 8B, 12N, 23Al and 27P have been studied by the single particle Bear– Hodgson (BH) wave functions with the two-body model of (core+p). It is found that the rms radii of these proton-rich nuclei are reproduced well by this model and the radial wave functions describe the long tail of the proton and matter density distributions. These results indicate that this model achieves a suitable description of the possible halo structure. The plane wave Born approximation (PWBA) has been used to compute the elastic charge form factors.