Preferred Language
Articles
/
joe-1037
Using Adaptive Neuro Fuzzy Inference System to Predict Rate of Penetration from Dynamic Elastic Properties

Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal.  The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in Mishrif formation in Nasiriya oil field for the selected wells. The mean square error for the results obtained from the ANFIS model was 0.015. The model was trained and simulated using MATLAB and Simulink platform. Laboratory measurements were conducted on core samples selected from two wells. Ultrasonic device was used to measure the transit time of compressional and shear waves and to compare these results with log records. Ten wells in Nasiriya oil field had been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software and based on the las files and log records provided. The average rate of penetration of the studied wells was determined and listed against depth with the average dynamic elastic properties and fed into the fuzzy system. The average values of bulk modulus for the ten wells ranged between (20.57) and (27.57) . For shear modulus, the range was from (8.63) to (12.95) GPa. Also, the Poisson’s ratio values varied from (0.297) to (0.307). For the first group of wells (NS-1, NS-3, NS-4, NS-5, and NS-18), the ROP values were taken from the drilling reports and the lowest ROP was at the bottom of the formation with a value of (3.965) m/hrs while the highest ROP at the top of the formation with a value (4.073) m/hrs. The ROP values predicted by the ANFIS for this group were (3.181) m/hrs and (4.865) m/hrs for the lowest and highest values respectively. For the second group of wells (NS-9, NS-15, NS-16, NS-19, and NS-21), the highest ROP obtained from drilling reports was (4.032) m/hrs while the lowest value was (3.96) m/hrs. For the predicted values by ANFIS model were (2.35) m/hrs and (4.3) m/hrs for the lowest and highest ROP values respectively.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 01 2014
Journal Name
Advances In Engineering Software
Scopus (45)
Crossref (38)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Apr 01 2015
Journal Name
2015 Annual Ieee Systems Conference (syscon) Proceedings
Scopus (4)
Crossref (4)
Scopus Crossref
View Publication
Publication Date
Sun Dec 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of penetration Rate and cost with Artificial Neural Network for Alhafaya Oil Field

Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Thu Oct 25 2018
Journal Name
Journal Of Economics And Administrative Sciences
Find the fuzzy maximum flow of Imam Kadhimen visitors using fuzzy dynamic programming University of Baghdad - Faculty of Administration and Economics

    Baghdad and the other Iraqis provinces have witnessed many   of celebrations which have the significant effect on the souls of Arabic and Islamic people in general , and Iraqi people, especially the birthday and death of two al-kadhimen Imams(peace upon them) and others .From here the researcher begin to study the visiting of imam kadhimen (peace upon him) on 25 Rajab the commemoration of his sacrifice, simply because have implications of religious, ideological and cultural sectors which represents in finding the greatest flow of visitors .the problem of research appeared due to the clear difference in number of visitors during one day, beside the significant increase in number of visitors  throu

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jul 01 2014
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Factors that predict mortality rate in biliary atresia

Background: B.A is a relatively rare obstructive condition of the bile ducts causing neonatal jaundice. The etiology is unknown but is the result of a progressive obliterative process of variable extent.  If not treated, B.A is fatal within the first 2 years of life.

Objectives: The aim of this study was to analyze & discuss the impact of many patients' factors on short-term outcome of patients with B.A who underwent Kasai operation in ou

Fac Med Baghdad

2014; Vol.56, No.2

Received: Feb. 2014

Accepted March. 2014

 

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
An Artificial Neural Network for Predicting Rate of Penetration in AL- Khasib Formation – Ahdeb Oil Field

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).

     An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.

&nb

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Dec 25 2017
Journal Name
Al-khwarizmi Engineering Journal
Utilizing a Magnetic Abrasive Finishing Technique (MAF) Via Adaptive Nero Fuzzy(ANFIS)

 Abstract

An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system  (ANFIS) was implemented for evaluation of a serie

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref
Publication Date
Sun Jun 23 2019
Journal Name
American Rock Mechanics Association
Using an Analytical Model to Predict Collapse Volume During Drilling: A Case Study from Southern Iraq

Zubair Formation is one of the richest petroleum systems in Southern Iraq. This formation is composed mainly of sandstones interbedded with shale sequences, with minor streaks of limestone and siltstone. Borehole collapse is one of the most critical challenges that continuously appear in drilling and production operations. Problems associated with borehole collapse, such as tight hole while tripping, stuck pipe and logging tools, hole enlargement, poor log quality, and poor primary cement jobs, are the cause of the majority of the nonproductive time (NPT) in the Zubair reservoir developments. Several studies released models predicting the onset of borehole collapse and the amount of enlargement of the wellbore cross-section. However, assump

... Show More
View Publication
Publication Date
Thu Dec 28 2023
Journal Name
Journal Européen Des Systèmes Automatisés
Scopus Crossref
View Publication Preview PDF