Rate of penetration plays a vital role in field development process because the drilling operation is expensive and include the cost of equipment and materials used during the penetration of rock and efforts of the crew in order to complete the well without major problems. It’s important to finish the well as soon as possible to reduce the expenditures. So, knowing the rate of penetration in the area that is going to be drilled will help in speculation of the cost and that will lead to optimize drilling outgoings. In this research, an intelligent model was built using artificial intelligence to achieve this goal. The model was built using adaptive neuro fuzzy inference system to predict the rate of penetration in Mishrif formation in Nasiriya oil field for the selected wells. The mean square error for the results obtained from the ANFIS model was 0.015. The model was trained and simulated using MATLAB and Simulink platform. Laboratory measurements were conducted on core samples selected from two wells. Ultrasonic device was used to measure the transit time of compressional and shear waves and to compare these results with log records. Ten wells in Nasiriya oil field had been selected based on the availability of the data. Dynamic elastic properties of Mishrif formation in the selected wells were determined by using Interactive Petrophysics (IP V3.5) software and based on the las files and log records provided. The average rate of penetration of the studied wells was determined and listed against depth with the average dynamic elastic properties and fed into the fuzzy system. The average values of bulk modulus for the ten wells ranged between (20.57) and (27.57) . For shear modulus, the range was from (8.63) to (12.95) GPa. Also, the Poisson’s ratio values varied from (0.297) to (0.307). For the first group of wells (NS-1, NS-3, NS-4, NS-5, and NS-18), the ROP values were taken from the drilling reports and the lowest ROP was at the bottom of the formation with a value of (3.965) m/hrs while the highest ROP at the top of the formation with a value (4.073) m/hrs. The ROP values predicted by the ANFIS for this group were (3.181) m/hrs and (4.865) m/hrs for the lowest and highest values respectively. For the second group of wells (NS-9, NS-15, NS-16, NS-19, and NS-21), the highest ROP obtained from drilling reports was (4.032) m/hrs while the lowest value was (3.96) m/hrs. For the predicted values by ANFIS model were (2.35) m/hrs and (4.3) m/hrs for the lowest and highest ROP values respectively.
Research summarized in applying the model of fuzzy goal programming for aggregate production planning , in General Company for hydraulic industries / plastic factory to get an optimal production plan trying to cope with the impact that fluctuations in demand and employs all available resources using two strategies where they are available inventories strategy and the strategy of change in the level of the workforce, these strategies costs are usually imprecise/fuzzy. The plant administration trying to minimize total production costs, minimize carrying costs and minimize changes in labour levels. depending on the gained data from th
... Show MoreThis work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
Lowpass spatial filters are adopted to match the noise statistics of the degradation seeking
good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.
This paper presents a proposed neural network algorithm to solve the shortest path problem (SPP) for communication routing. The solution extends the traditional recurrent Hopfield architecture introducing the optimal routing for any request by choosing single and multi link path node-to-node traffic to minimize the loss. This suggested neural network algorithm implemented by using 20-nodes network example. The result shows that a clear convergence can be achieved by 95% valid convergence (about 361 optimal routes from 380-pairs). Additionally computation performance is also mentioned at the expense of slightly worse results.
In IRAQ, the air conditioners are the principal cause of high electrical demand. In summer, the outer temperature sometimes exceeds 500C which significantly effects on the A/C system performance and power consumed. In the present work, the improvement in mechanical and electrical performance of split A/C system is investigated experimentally and analytically. In this paper, performance and energy saving enhancement of a split-A/C system was experimentally investigated to be efficiently compatible with elevated temperature weathers. This improvement is accomplished via Smart Control System integrate with Proportional-Integral- Differential PID algorithm. The PIC16F877A micro-controller has been programmed with the PID and PWM c
... Show MoreA field experiment was conducted on the form of the Dept. of Field Crop Sci. / College of Agriculture / University of Baghdad in spring and fall seasons of 2009 and 2010 . Ten inbreds of maize were planted and crossed to each other to produce single crosses . In the second season, single crosses were planted along with thin parent to produce three – way and double crosses . In the third seasons panet and crosses were planted . Crosses were selfed to produce F2 seeds and increase seeds of inbreds . In the fourth season, all grin types were planted , and their agronomic traits were evaluated . Values of P of inbreds , F1 and F2 were calculated for agronomic traits . The new formula to predict inbreeding depression ( ID ) F2 plant without gr
... Show MoreRutting in asphalt mixtures is a very common type of distress. It occurs due to the heavy load applied and slow movement of traffic. Rutting needs to be predicted to avoid major deformation to the pavement. A simple linear viscous method is used in this paper to predict the rutting in asphalt mixtures by using a multi-layer linear computer programme (BISAR). The material properties were derived from the Repeated Load Axial Test (RLAT) and represented by a strain-dependent axial viscosity. The axial viscosity was used in an incremental multi-layer linear viscous analysis to calculate the deformation rate during each increment, and therefore the overall development of rutting. The method has been applied for six mixtures and at different tem
... Show More