Preferred Language
Articles
/
joe-1021
Predicting Wetting Patterns in Soil from a Single Subsurface Drip Irrigation System

Soil wetted pattern from a subsurface drip plays great importance in the design of subsurface drip irrigation (SDI) system for delivering the required water directly to the roots of the plant. An equation to estimate the dimensions of the wetted area in soil are taking into account water uptake by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, three soil textures namely loamy sand, sandy loam, and loam soil were used with three different types of crops tomato, pepper, and cucumber, respectively, and different values of drip discharge, drip depth, and initial soil moisture content were proposed. The soil wetting patterns were obtained at every thirty minutes for a total time of irrigation equal to three hours. Equations for wetted width and depth were predicted and evaluated by utilizing the statistical parameters (model efficiency (EF), and root mean square error (RMSE)). The model efficiency was more than 95%, and RMSE did not exceed 0.64 cm for three soils. This shows that evolved formula can be utilized to describe the soil wetting pattern from SDI system with good accuracy.    

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Green Engineering
Scopus (5)
Scopus
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Water Movement through Soil under Drip Irrigation using Different Hydraulic Soil Models

Drip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 29 2021
Journal Name
Journal Of Engineering
Numerical Simulation of Water Distribution with Uptake Root in Drip Irrigation using Different Soil Hydraulic Models

Surface drip irrigation is one of the most conservative irrigation techniques that help control providing water directly on the soil through the emitters. It can supply fertilizer and providing water directly to plant roots by drippers. One of the essential needs for trickle irrigation nowadays is to obtain more knowledge about the moisture pattern under the trickling source for various types of soil with various discharge levels with trickle irrigation. Simulation numerical using HYDRUS-2D software, version 2.04 was used to estimate an equation for the wetted area from a single surface drip irrigation in unsaturated soil is taking into account water uptake by roots. In this paper, using two soil types were used, namely

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Effect of Surface and Subsurface Drip Irrigation and Furrows Irrigation System on Water Productivity, Growth and Yield of Lettuce (Lactuca Sativa L)

A field experiment was conducted in Al-Yusufiya district - Al-Mahmoudiya district, Baghdad province during the winter season 2021, to study improving the efficiency and management of water use and the productivity of lettuce under different irrigation systems. The Nested-Factorial Experiments design was used, where the main plots include the first factor, irrigation levels (I1) 50%, (I2) 75%, (I3) 100, (I4) 125%, (I5) 150% ETpan. After depleting 35% of the available water and in terms of climatic data from the American Evaporative Basin, Class A. Then the main factor is divided into three replicates, and the coefficients of the second factor are distributed randomly within each replicate, which includes the irrigation system: surface drip i

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jul 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
The Effect of Dry Farming and Water Stress under Subsurface Drip Irrigation System on Water and Rice Productivity
Abstract<p>A field experiment was carried out during the 2020 season at the College of Agricultural Engineering/ University of Baghdad, Al-Jadriya to evaluate the effect of dry farming when applying water stress under the subsurface drip irrigation system on water productivity and rice yield. The experiment was conducted with three levels of irrigation water stress when 10, 20 and 40% of the available water was depleted and in three dimensions between drip lines 10, 15 and 20 cm. The experiment was designed according to a randomized complete block design, according to the split plot design, with three replications. Determine the depth of irrigation water depending on the moisture depletion of th</p> ... Show More
Scopus Crossref
View Publication
Publication Date
Thu Feb 28 2019
Journal Name
Journal Of Engineering
Numerical Simulation of Unsaturated Soil Water from a Trickle Irrigation System for Sandy Loam Soils

Trickle irrigation is a system for supplying filtered water and fertilizer directly into the soil and water and it is allowed to dissipate under low pressure in an exact predetermined pattern. An equation to estimate the wetted area of unsaturated soil with water uptake by roots is simulated numerically using the HYDRUS-2D/3D software. In this paper, two soil types, which were different in saturated hydraulic conductivity were used with two types of crops tomato and corn, different values of emitter discharge and initial volumetric soil moisture content were assumed. It was assumed that the water uptake by roots was presented as a continuous sink function and it was introduced into Richard's equation in the unsaturated z

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Aug 31 2019
Journal Name
Association Of Arab Universities Journal Of Engineering Sciences
Improvement of Economic Water Productivity of Cucumber by using Soil Water Retention Technology under Subsurface Trickle Irrigation System

Subsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the e

... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Movement of Irrigation Water in Soil from a Surface Emitter

Trickle irrigation is one of the most conservative irrigation techniques since it implies supplying water directly on the soil through emitters. Emitters dissipate energy of water at the end of the trickle irrigation system and provide water at emission points. The area wetted by an emitter depends upon the discharge of emitter, soil texture, initial soil water content, and soil permeability. The objectives of this research were to predict water distribution profiles through different soils for different conditions and quantify the distribution profiles in terms of main characteristics of soil and emitter. The wetting patterns were simulated at the end of each hour for a total time of application of 12 hrs, emitter disch

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Journal Of Engineering
Salt Distribution in a Soil Irrigated by Subsurface Emitter

The best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical res

... Show More
Crossref
View Publication Preview PDF
Publication Date
Thu Aug 01 2024
Journal Name
Iop Conference Series: Earth And Environmental Science
Smart Irrigation Technique in the Fixed Irrigation System Based on Soil Moisture Content
Abstract<p>The growing water demand has raised serious concerns about the future of irrigated agriculture in many parts all over the world, changing environmental conditions and shortage of water (especially in Iraq) have led to the need for a new system that efficiently manages the irrigation of crops. With the increasing population growing at a rapid pace, traditional agriculture will have a tough time meeting future food demands. Water availability and conservation are major concerns for farmers. The configuration of the smart irrigation system was designed based on data specific to the parameters concerning the characteristics of the plant and the properties of soil which are measured once i</p> ... Show More
Scopus Crossref
View Publication