The habitat type and food availability always influence the population size of many
organisms. Bird’s feeding pattern should be abstracted to complete avian community structure
data. The agronomy main research farm of Orissa University of Agriculture and Technology
is a well-managed multi-crop agro-ecosystem which provides a suitable ground for ecological
research. In a multi-crop farmland, the association of Barn Swallow Hirundo rustica Linnaeus,
1758, with the Indian mustard Brassica juncea (L.) Czernajew, 1859 crops have been
recorded for the first time while hovering only on this field. A flock of Barn swallows was
recorded in 32 field visits while flying continuously over the Indian mustard field after
flowering to ripening of fruit in the morning and sometimes in afternoon also. The range of
the birds was recorded from 6 to 61 with a mean individual of 36.03 ± 15.37 hovering for
1.83 hr daily. This may be the behaviour for the feeding pattern of these flying insectivorous
birds which was not seen in other crop-fields with same insect diversity describing it as not
the only reason for this behaviour. To reveal this poorly understood behaviour of flying
insectivore birds, a detailed long term behavioural study with gut content analysis is needed to
explain the particular reason behind this behaviour of Barn swallows which will support the
conservation of these birds and control their population decline.
A laboratory experiment studied the effects of the green tea (Camellia sinensis L.) aqueous extract at concentrations of 10, 20, and 30 ppm on the germination and growth traits of the mung bean (Vigna radiata L.), carried out in 2021 at the Department of Biology, College of Education for Pure Sciences, Ibn Al-Haitham, University of Baghdad, Iraq. The results showed that Camellia sinensis green tea extracts played a vital role by significantly boosting all the examined characteristics compared with the control treatment. The aqueous extract of Green tea at concentrations of 10 and 20 ppm gave the best performance in increasing germination rates, germination speed, plant promoter indicator, and seedling strength compared with the control trea
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThe speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreIn this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
The aim of this paper is to prove some results for equivalence of moduli of smoothnes in approximation theory , we used a"non uniform" modulus of smoothness and the weighted Ditzian –Totik moduli of smoothness in by spline functions ,several results are obtained .For example , it shown that ,for any the inequality , is satisfied ,finally, similar result for chebyshev partition and weighted Ditzian –Totik moduli of smoothness are also obtained.
Autorías: Nuha Mohsin Dhahi, Muhammad Hamza Shihab. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.