This study aimed to determine the optimal conditions for extracting basil seed gum in addition to determine the chemical components of basil seeds. Additionally, the study aimed to investigate the effect of the mixing ratio of gum to ethanol when deposited on the basis of the gum yield which was1:1, 1:2, 1:3 (v/v) respectively. The best mixing ratio was one size of gum to two sizes of ethanol, which recorded the highest yield. Based on the earlier, the optimal conditions for extracting basil seed gum in different levels which included pH, temperature, mixing ratio seeds: water and the soaking duration were studied. The optimal conditions were: pH 8, temperature of 60°C, mixing ratio seeds: water 1:65 (w/v) and soaking duration of 30 minutes. The gum viscosity was determined by Centipoise (cP).
Purpose: To validate a UV-visible spectrophotometric technique for evaluating niclosamide (NIC) concentration in different media across various values of pH. Methods: NIC was investigated using a UV-visible spectrophotometer in acidic buffer solution (ABS) of pH 1.2, deionized water (DW), and phosphate buffer solution (PBS), pH 7.4. The characterization of NIC was done with differential scanning calorimeter (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The UV analysis was validated for accuracy, precision, linearity, and robustness. Results: The DSC spectra showed a single endothermic peak at 228.43 °C (corresponding to the melting point of NIC), while XRD and FTIR analysis confirmed the identit
... Show MoreThe aim of this research work is to study the effect of stabilizing gypseous soil, which covers vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties to be used as a base course layer replacing the traditional materials of coarse aggregate and broken stones which are scarce at economical prices and hauling distances. Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%, medium curing cutback asphalt (MC-30), and hydrated lime are used in this study. The conducted tests on untreated and treated gypseous soil with different percentages of medium curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one dimensional confine
... Show MoreIn this investigation, water-soluble N-Acetyl Cysteine Capped-Cadmium Telluride QDs (NAC/CdTe nanocrystals), utilizing N-acetyl cysteine as a stabilizer, were prepared to assess their potential in differentiating between DNA extracted from pathogenic bacteria (e.g. Escherichia coli isolated from urine specimen) and intact DNA (extracted from blood of healthy individuals) for biomedical sensing prospective. Following the optical characterization of the synthesized QDs, the XRD analysis illustrated the construction of NAC-CdTe-QDs with a grain size of 7.1 nm. The prepared NAC-CdTe-QDs exhibited higher PL emission features at of 550 nm and UV-Vis absorption peak at 300 nm. Additionally, the energy gap quantified via PL and UV–Vis were 2.2 eV
... Show MoreThis paper presents on the design of L-Band Multiwavelength laser for Hybrid Time Division Multiplexing/ Wavelength Division Multiplexing (TDM/WDM) Passive Optical Network (PON) application. In this design, an L-band Mulltiwavelength Laser is designed as the downstream signals for TDM/WDM PON. The downstream signals ranging from 1569.865 nm to 1581.973 nm with 100GHz spacing. The multiwavelength laser is designed using OptiSystem software and it is integrated into a TDM/WDM PON that is also designed using OptiSystem simulation software. By adapting multiwavelength fiber laser into a TDM/WDM network, a simple and low-cost downstream signal is proposed. From the simulation design, it is found that the proposed design is suitable to be used
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreMoisture induced damage in asphaltic pavement might be considered as a serious defect that contributed to growth other distresses such as permanent deformation and fatigue cracking. This paper work aimed through an experimental effort to assess the behaviour of asphaltic mixtures that fabricated by incorporating several dosages of carbon fiber in regard to the resistance potential of harmful effect of moisture in pavement. Laboratory tests were performed on specimens containing fiber with different lengths and contents. These tests are: Marshall Test, the indirect tensile test and the index of retained strength. The optimum asphalt contents were determined based on the Marshall method. The preparation of asphaltic mixtures involved
... Show MoreThis research aims to improve the radiation shielding properties of polymer-based materials by mixing PVC with locally available building materials. Specifically, two key parameters of fast neutron attenuation (removal cross-section and half-value layer) were studied for composite materials comprising PVC reinforced with common building materials (cement, sand, gypsum and marble) in different proportions (10%, 30% and 50% by weight). To assess their effectiveness as protection against fast neutrons, the macroscopic neutron cross-section was calculated for each composite. Results show that neutron cross-section values are significantly affected by the reinforcement ratios, and that the composite material PVC + 50% gypsum is an effect
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show More