The effects of essential oilNigella sativa and Menthawas study on the chemical, microbial and sensory properties for soft white cheese that produced from it during storage at 0, 7 and 14 days .The results show significantly percent decrease in moisture for all samplesand maximum decrease was at the latest storage period for all them .The reduced in moisture was accompanied with increase in percentage of protein and fat during of storage period for all samples.
The control sample showed increased in bacterial logarithmic for total count bacterial, coliform, Staphylococcus aureus, proteolytic bacteria, lipolytic bacteria and mold and yeasts during of storage period , the highest results showed at the latest storage period 14days, it was 8, 4.96, 4.43, 4.43, 4.33 and 4.23 cfu/g respectively, these numbers were significantly decrease when nigella and spearmint was added compared with control sample at zero time for all microorganisms and it reach at the end of storage periodto be 6.29, 2.54, 1.95, 2.2, 1.91 and 1.3 cfu/g and 6.28, 2.76, 2.27, 1.69, 1.94 and 1.47 cfu/g for soft white cheese respectively.
The acidity value was significantly increase during storage periods for all cheese samplescontrol, Nigella and Spearmint to reach after 14days to be 0.67, 0.79 and 0.93% respectively. The pH value was reduced for all samples to reach at the end of duration of storage 5.21, 5.35 and 5.43 respectively,accompanied of change in total acidity and pH increase in the numbers of lactic acid bacteria during of storage periods, to reach at the end of storage to be 4.42, 3.72 and 3.5 cfu/g respectively.
The results indicate the superiority of the cheese sample added spearmint oil in sensory properties which included flavor, color, texture and bitterness during of storage periods compared with cheese added nigella oil and the control sample.
In this study, He's parallel numerical algorithm by neural network is applied to type of integration of fractional equations is Abel’s integral equations of the 1st and 2nd kinds. Using a Levenberge – Marquaradt training algorithm as a tool to train the network. To show the efficiency of the method, some type of Abel’s integral equations is solved as numerical examples. Numerical results show that the new method is very efficient problems with high accuracy.
The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.
In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes. Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo
... Show MoreIn this work, the methods (Moments, Modified Moments, L-Moments, Percentile, Rank Set sampling and Maximum Likelihood) were used to estimate the reliability function and the two parameters of the Transmuted Pareto (TP) distribution. We use simulation to generate the required data from three cases this indicates sample size , and it replicates for the real value for parameters, for reliability times values we take .
Results were compared by using mean square error (MSE), the result appears as follows :
The best methods are Modified Moments, Maximum likelihood and L-Moments in first case, second case and third case respectively.
Heart disease identification is one of the most challenging task that requires highly experienced cardiologists. However, in developing nations such as Ethiopia, there are a few cardiologists and heart disease detection is more challenging. As an alternative solution to cardiologist, this study proposed a more effective model for heart disease detection by employing random forest and sequential feature selection (SFS). SFS is an effective approach to improve the performance of random forest model on heart disease detection. SFS removes unrelated features in heart disease dataset that tends to mislead random forest model on heart disease detection. Thus, removing inappropriate and duplicate features from the training set with sequential f
... Show MoreIn this paper, a robust adaptive sliding mode controller is designed for a mobile platform trajectory tracking. The mobile platform is an example of a nonholonomic mechanical system. The presence of holonomic constraints reduces the number of degree of freedom that represents the system model, while the nonholonomic constraints reduce the differentiable degree of freedom. The mathematical model was derived here for the mobile platform, considering the existence of one holonomic and two nonholonomic constraints imposed on system dynamics. The partial feedback linearization method was used to get the input-output relation, where the output is the error functions between the position of a certain point on the platform
... Show MorePattern matching algorithms are usually used as detecting process in intrusion detection system. The efficiency of these algorithms is affected by the performance of the intrusion detection system which reflects the requirement of a new investigation in this field. Four matching algorithms and a combined of two algorithms, for intrusion detection system based on new DNA encoding, are applied for evaluation of their achievements. These algorithms are Brute-force algorithm, Boyer-Moore algorithm, Horspool algorithm, Knuth-Morris-Pratt algorithm, and the combined of Boyer-Moore algorithm and Knuth–Morris– Pratt algorithm. The performance of the proposed approach is calculated based on the executed time, where these algorithms are applied o
... Show MoreIntrusion detection systems detect attacks inside computers and networks, where the detection of the attacks must be in fast time and high rate. Various methods proposed achieved high detection rate, this was done either by improving the algorithm or hybridizing with another algorithm. However, they are suffering from the time, especially after the improvement of the algorithm and dealing with large traffic data. On the other hand, past researches have been successfully applied to the DNA sequences detection approaches for intrusion detection system; the achieved detection rate results were very low, on other hand, the processing time was fast. Also, feature selection used to reduce the computation and complexity lead to speed up the system
... Show MoreThis paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.
The research aims to characterize the strategic plan of the Educational Professional Development Center, to reveal the most important training needs for teachers from this center, to reveal the extent to which this center meets those needs, and to identify the differences between teacher responses about the degree of importance, availability of those needs according to variables of sex, specialization, and years of experience. This descriptive study adopted a questionnaire applied to (256) teachers in the K.S.A. The results of the study showed that all training needs ranged in the degree of importance from large to very large and that the most important were the skills associated with communicating with members of the learning community.
... Show More