This study was conducted to prepare protein concentrates from AL-Zahdidate’s pits by using alkaline methods where the chemical composition of the pits were (7.30, 1.04, 5.80, 8.68 and 77.19) % for each of the moisture, ash, protein, fat and carbohydrates respectively and the chemical composition of the concentrate protein was (6.62, 4.10, 26.70, 0.93, and 58.65) % respectively. The content of protein concentrate from the metallic elements (144.07, 25.11, 15.02, 0.49, 0.59, 0.27, 0.22 and 234.6) mg/ 100 g each of potassium, magnesium, calcium, iron, manganese, copper, zinc and phosphorus respectively. The results of SDS-PAGE showed five bands with weights molecular ranged between 11000-70000 Dalton. Give the biscuit which contain protein concentrate with areplacement ratio 5% significant differences in characteristics of the upper surface and the color of the pulp, while the biscuit which contain protein concentrate with a replacement ratio 10% give significant differences in the color of the pulp only . The spread ratio for each the standard biscuit and biscut which content concetrate protein with a replacement ratio (5, 10) % was (5.32, 4.67 and 4.62) respectively, and the protein percentage (8.26 and 8.72 and 9.98) and in the same order.
The Disi water samples were collected from different Disi aquifer wells in Jordan using a clean polyethylene container of 10-liter size. A hyper-pure germanium (HPGe) detector with high- resolution gamma-ray spectroscopy and a low background counting system was used for the identification of unknown gamma-rays emitting from radionuclides in the environmental samples. The ranges of specific activity concentrations of 226Ra and 228Ra in the Disi aquifer water were found to be from 0.302 ± 0.085 to 0.723 ± 0.207 and from 0.047 ± 0.010 to 0.525 ± 0.138 Bq L−1, with average values of 0.516 ± 0.090 and 0.287 ± 0.091 Bq L−1, respectively. The average combined radium (226Ra + 228Ra) activity and radium activity ratio (228Ra/226Ra) in Disi
... Show MoreThe problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work tha
... Show More