This study aimed to study the inhibition activity of purified bacteriocin produced from the local isolation Lactococcuslactis ssp. lactis against pathogenic bacteria species isolated from clinical samples in some hospitals Baghdad city. Screening of L. lactis ssp. Lactis and isolated from the intestines fish and raw milk was performed in well diffusion method. The results showed that L. lactis ssp. lactis (Lc4) was the most efficient isolate in producing the bacteriocin as well observed inhibitory activity the increased that companied with the concentration, the concentration of the twice filtrate was better in obtaining higher inhibition diameters compared to the one-fold concentration. The concentrated bacteriocin was purified using the gel filtration column and Sephacryl S-200. The results showed the high inhibitory activity of the purified bacteriocin after the purification against the positive and negative bacteria of the Gram stain under study compared to the one-fold concentration and two-fold before purification , The diameters of the inhibition zones after gel-filtering of the purified bacteriocin reached S. aureus, S. epidermidis, P. aeruginosa, E. coli, E. clocae and S. marcescens (23, 25, 26, 20, 22 and 28) Mm respectively. The carbohydrate content of purified bacteriocin from L. lactis ssp. lactis (Lc4) isolate was 6.02% with a molecular weight of 6310 Dalton. The results showed that purified bacteriocin retained its inhibitory activity at pH 2-10 and showed the highest inhibition at pH 4-6 and lost at pH 12. The purified bacteriocin was characterized by thermal stability. It retained its effectiveness when exposed to 40, 60, 80, 100°C for 30, 15, 5 minutes and 120°C for 15.5 minutes and lost 50% of its effectiveness when exposed to 120°C for 30 minutes. Results The purified bacteriocin was effectively retained when treated with enzyme pepsin and trypsin of 37°C for one hour and at pH 7.
Hydrate dissociation equilibrium conditions for carbon dioxide + methane with water, nitrogen + methane with water and carbon dioxide + nitrogen with water were measured using cryogenic sapphire cell. Measurements were performed in the temperature range of 275.75 K–293.95 K and for pressures ranging from 5 MPa to 25 MPa. The resulting data indicate that as the carbon dioxide concentration is increased in the gas mixture, the gas hydrate equilibrium temperature increases. In contrast, by increasing the nitrogen concentration in the gas mixtures containing methane or carbon dioxide decreased the gas hydrate equilibrium temperatures. Furthermore, the cage occupancies for the carbon dioxide + methane system were evaluated using the Van der Wa
... Show MoreIn this study the as-deposited and heat treated at 423K of conductive blend graphene oxide (GO)/ poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) thin films was prepared with different PEDOT:PSS concentration (0, 0.25, 0.5, 0.75 and 1)w/w on pre-cleaned glass substrate by spin coater. The XRD analysis indicate the existence of the preffered peak (001) of GO around 2θ=8.24° which is domain in all GO/ PEDOT:PSS films characterized for GO, this result approve the good quality of the PEDOT:PSS dispersion in GO, this peak shifted to the lower 2θ with increasing PEDOT:PSS concentration and after annealing process. The scanning electron microscopy (SEM) images and atomic force microscopy (AFM) clearly sh
... Show MoreNew Azo compounds containing an 1,8-naphthalimide moiety were synthesized from 1, 8-naphthalic anhydride by a reaction with p-phenylenediamine or benzidine to produce 1,8-naphthalimide derivatives (1 or 2), which were converted to diazonium salt derivatives by using sodium nitrite and acetic acid at 0-5 áµ’C. The diazonium salt was subjected to a coupling reaction with different substituted phenol in alkaline media at 0-5 áµ’c to produce azo compound derivatives (3-14).
The New Azo compound derivatives (3-14) were identified by 1H-NMR, 13C-NMR, and FTIR and by measuring characteristic physical properties and specific reactions. Also, the ability of the prepared azo compounds to work as acid-
... Show MorePromoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding of the metal ion through –OHand –COOgroups of bidentate to the 5-chlorosalicylic acid and through –NH2 and –COOgroups of bidentate to the L-valine by FT-IR studies . The agar diffusion method has been used to study the antib
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding