This study was conducted in the plant protection department/ College of Agriculture/ University of Baghdad to evaluate the efficiency of physical agents ozone, ultraviolet radiation, microwave for destroying afla produced in corn seeds. An isolate af A.flavus producing Aflatoxin B1 was obtained from plant protection dept. college of Agric. University of Baghdad. Results showed destroy toxin AFLA B1 the effect of radiation microwave in the media of Japex degree 80 and 100 co 57.14% and 85.71%, respectively, and for 20 sec, compared to the treatment comparison 0.00% as found significant differences were apparent between transactions and the treatment of comparison, as and notes the existence of a significant difference to the treatment radiation microwave degree 100 co, amounting to reduction ratio of 85.71%, the results of the effect of radiation microwave showed a destroy AFLA B1 crude by two notches 80 and 100 co, times 5, 10, 20 sec, and there are significant differences between treatments and treatment comparison as well as the existence of clear differences of treatments degree 80 and 100 co and time of 20 sec and rates reduced 95.09% and 91.18%, respectively, showed the results of destroy toxin AFLA B1 contaminated corn and the presence of significant differences apparent between the comparative treatment and the rest of the transactions when it was noted the lack of significant differences between transactions ozone and ultraviolet in 240.365 nm and radiation microwave degree effect temperature 80 and 100 co and rates reduced 89.52% and 89.52% and 69.52% and 94.29% and 89.52%, respectively, and was the best treatment is radiation microwave degree 80 m and by the reduction of 94.29%, and the results showed that there were significant differences apparent between the comparison treatment non-polluting and the rest of the transactions and observed significant differences were apparent between transactions radiation microwave and ozone and ultraviolet radiation led by microwave treatment of degrees effect 80 and 100 co and by the reduction of 100% for both degrees.
One of the most important challenges facing the development of laser weapons is represented by the attenuation of the laser beam as it passed through the layers of atmosphere.This paper presents a theoretical study to simulate the effect of turbulence attenuation and calculates the decrease of laser power in Iraq. The refractive index structure C_n^2 is very important parameter to measure the strength of the atmospheric turbulence, which is affected by microclimate conditions, propagation path, season and time in the day. The results of measurements and predictions are based on the Kolmogorov turbulence theory. It was demonstrated by simulations that the laser weapons in Iraq were severely affected due to the large change in temperatures,
... Show MoreAfter its 35-year occupation of Japan and the US occupation, Korea has set its sights on a long-term goal of building its country and establishing its foundations, unobtrusive and unchecked by the problems and wars that have stood in the way of its goal, surpassing all odds and achieving the best results. The most powerful Asian and global economies, which gained the respect of the world and its appreciation of the experience has become referred to as boys
Discretionary Punishment, Public Regulation, Interest
Background and purpose: Animal model helps researchers to evaluate new treatment plan for human and understand pathological mechanism involved in a development of disease. The use of rats as an animal model for Alzheimer's research has become a favorite among researchers. Rats are capable in mimicking Alzheimer disease due to their intelligence and quick adaptation to nature. At present there are several methods that can be used to induce Alzheimer's animals, but each method has advantages and disadvantages. We need to learn other methods that can provide many advantages and few disadvantages. The Amyloid-beta 42 (Aβ-42) and Reactive Oxygen Species (ROS) are thought to play an important role in the pathology of Alzheimer’s disease. Th
... Show MoreThis work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.
... Show MoreA field experiment was carried out in the Field Crops Department at the College of Agricultural Engineering Sciences-University of Baghdad for the autumn season 2023, with the goal of evaluating and performance of various genotypes of maize under different sowing dates, and the study included (MgW16, Nad H965, Nad it 706, Nad it 2525) with four single crosses (2 × 1), (3 × 1), (4 ×1), (3× 2) and four three way crosses (3×2 × 1),(4×2 × 1), (4×3 × 1), (Nad it 25 × 3 × 1) and four synthetic varities (Nad H25 × 3 ×2 ×1), (Baghdad), Al-Ezz and Tigris. The genotypes are planted with three agricultural dates (10, 20 and 30 July) and are compared according to the randomized com
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
Abstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution (Emission) was studied at 772 nm. Several process parameter were Investigated as concentration of PVA, the effect of distance from nozzle tip to the grounded collector (gap distance), and final the effect of high voltage. We find the optimum condition to prepare a narrow nanofibers is at concentration of PVA 16gm, the fiber has 20nm diameter.
In this research we prepared nanofibers by electrospinning
from poly (Vinyl Alcohol) / TiO2. The spectrum of the solution
(Emission) was studied at 772 nm. Several process parameter were
Investigated as concentration of PVA, the effect of distance from
nozzle tip to the grounded collector (gap distance), and final the
effect of high voltage. We find the optimum condition to prepare a
narrow nanofibers is at concentration of PVA 16gm, the fiber has
20nm diameter