The aim of this study was to know the inhibition activity of squeezed grape waste extract on Bacillus stearpthermophilus by using three different tempretures degree 40, 60 and 80c, in order to reduce the time exposure of food for preservation. This study include two branchs: First: isolation and identification of Bacillus stearothermophilus from soil, 5 sample were collected from the soil of the college agriculture/Baghdad university. Samples were cultured on nutrient agar, microscopic and culturing tests were conducted and many biochemical tests were done. The isolates were cultivated at 55 c and 65 c for differentiate it from Bacillus coagulans which is can't grow at 65 co. The choosed isolate was identified as B. stearothermophilus which is bacilli, spore forming, g+ve ,motile and with 0.71-3 µm diameter. Second studying the inhibition activity of squeezed grape waste extract against isolated bacteria (in vitro) by using different temp mentioned above at differenttimes(0, 10, 30, 40 and 50) min with 500 ppm conc. Of the extract. The number of cells at 40 c for control were 4 x 102 cfu after 50 min, the number was decreased to 2.88 x 102 cfu with the extract. This decreasion was increased as the time progress for three temp. The best decreasing was 4 x 10 cfu at 60 c with extract and 3 x 102 cfu for control after 50 min. At 80 co it was higher a little bit at 60 c, it was 5 x 101 cfu with grape waste extract and 2.1 x 102 cfu for control.
Gypsum is one of the important construction materials in Iraq in plastering surfaces and gypsum board , the ability of gypsum to give a comfortable an aesthetic ambiance as a construction material increase the need of gypsum , The particle size , total surface area and particle size distribution were factors affecting plaster properties used for construction properties . In this study gypsum paste was used with different mixing ratios of particle size and studied the physical properties of these types of pastes named (standard consistency ,setting time ,density) and compressive strength . The results showed that the water to gypsum ratio increased with increasing the fineness of the gypsum to (0.75%) and the setting time to the maxi
... Show More
Nanomaterials have an excellent potential for improving the rheological and tribological properties of lubricating oil. In this study, oleic acid was used to surface-modify nanoparticles to enhance the dispersion and stability of Nanofluid. The surface modification was conducted for inorganic nanoparticles (NPs) TiO₂ and CuO with oleic acid (OA) surfactant, where oleic acid could render the surface of TiO2-CuO hydrophobic. Fourier transform infrared spectroscopy (FTIR), and Scanning electron microscopy (SEM) were used to characterize the surface modification of NPs. The main objective of this study was to investigate the influence of adding modified TiO₂-CuO NPs with weight ratio 1:1 on thermal-physical propertie
... Show MoreHigh temperature superconductors with a nominal composition HgBa2Ca2Cu3O8+δ
for different values of pressure (0.2,0.3, 0.5, 0.6, 0.9, 1.0 & 1.1)GPa were prepared by
a solid state reaction method. It has been found that the samples were semiconductor
P=0.2GPa.while the behavior of the other samples are superconductor in the rang
(80-300) K. Also the transition temperature Tc=143K is the maximum at P is equal to
0.5GPa. X-ray diffraction showed a tetragonal structure with the decreasing of the
lattice constant c with the increasing of the pressure. Also we found an increasing of
the density with the pressure.
This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re
... Show MoreRoller compacted concrete (RCC) is a concrete of no slump, no reinforcement, no finishing, and compacted using vibratory roller. When compared with conventional concrete, it contains less water content
when compared to traditional concrete. The RCC technique achieves significant time and cost savings during the construction of concrete. This study demonstrates the preparation of RCC slab of (38 ×38× 10) cm
samples by using roller compactor which is manufactured in local markets. The Hydrated lime additive is used to study the mechanical and physical properties of that RCC slab samples. This investigation is divided
into two main stages: The First stage consists of hammer compaction method with two gradation of aggregate, dense
An experimental and computational study is conducted to analyze the thermal performance of heat sinks and to pick up more profound information in this imperative field in the electronic cooling. One important approach to improve the heat transfer on the air-side of the heat exchanger is to adjust the fin geometry. Experiments are conducted to explore the impact of the changing of diverse operational and geometrical parameters on the heat sink thermal
performance. The working fluid used is air. Operational parameters includes: air Reynolds number (from 23597 to 3848.9) and heat flux (from 3954 to 38357 W/m
2 ). Conformational parameters includes: change the direction of air flow and the area of conduct
This research was to determine the effect of rare earth metal (REM) on the as-cast microstructure of Mg-4Al alloy. The rare earth metal used here is Lanthanum to produce Mg-4Al-1.5La alloy. The microstructure was characterized by optical microscopy. The phases of this alloy were identified by X-ray diffraction. The microstructure of Mg-4Al consists of α-Mg and grain boundaries with precipitated phase particles. With the addition of Lanthanum, three distinct phases were identified in the X-ray diffraction patterns of the as cast Mg-4Al-1.5La: Mg, Al11La3, Al4La. The Mg17Al12 phase was not detected. The addition of Lanthanium increases the hardness and dec
... Show MoreThis paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T
The present work aimed to study the SiO2μPs, and NPs effect on the biodegradability of St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends with different concentrations (30, 40, 50, and 60 %). FTIR test was carried out for the samples preparation. The results proved some changes which might be related to changing in crystallinity of St/PVA matrix as well as physical incorporation of SiO2 μPs, and NPs addition. The enzymatic test and water uptake results proved that increase in weight loss with increases of starch ratio. The lowest weight loss was PVA; the highest weight loss is 60% St/PVA whereas the lowest weight loss is 30%St/PVA for blends involved. SiO2μPs (753.7 nm), and NPs (263.1 nm) were added at d
... Show More