Preferred Language
Articles
/
jkmc-95
Basal cell markers:34BE12 and p63, improving detection of basal cells in atypical prostatic lesions
...Show More Authors

Background: The diagnosis of prostatic pathology may be of challenging , as some  difficult and suspected, atypical  cases may lack basal cell layer by routine H&E sections . Antibodies against 34BE12(HMW-CK) and p63 aid the diagnosis of such cases , to distinguish benign from  malignant prostatic lesions.

Objective: to identify basal cells in atypical prostatic lesions ,and distinguish benign from malignant prostatic lesions.

Type of the study:  A retro-spective  study.

Methods:  115cases of  paraffin embedded prostatic tissue blocks ,diagnosed as : 76 cases were benign prostatic hyperplasia( BPH) , 9 cases were  high grade –prostatic intraepithelial neoplasia (HG-PIN) , and 30 cases were prostatic carcinoma(PCa) .Sections from each blocks were prepared for immunostaining with 34BE12 and p63.

Results : basal cells were detected in cases of BPH , and HG-PIN , and absent  in all cases of prostatic carcinoma ,using basal cell markers . Negative benign glands(>2) were found in 71.6% and 38.2%  for   BPH  and 57.1% and 55.6% for HG-PIN immunostained  with high molecular weight cytokeratin (34BE12) and p63 , respectively, and significantly reduced to 9.0% and 11.1% for BPH and HG-PIN, respectively  with combined using of both markers .Conclusion : Combination of both   basal cell markers (34BE12 , p63) improving basal cell detection in atypical ,suspected prostatic lesions and distinguish benign from malignant lesions.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 30 2020
Journal Name
Al-kindy College Medical Journal
The Value of Diffusion Weighted MRI in the Detection and Localization of Prostate Cancer among a Sample of Iraqi Patients
...Show More Authors

Background: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.

Aim of the study:  To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).

Type of the study: a prospective analytic study

Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Engineering
Practical comparation of the accuracy and speed of YOLO, SSD and Faster RCNN for drone detection
...Show More Authors

Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,

... Show More
View Publication Preview PDF
Crossref (13)
Crossref
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
COMPARATIVE STUDY FOR EDGE DETECTION OF NOISY IMAGE USING SOBEL AND LAPLACE OPERATORS
...Show More Authors

Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Artificial Intelligent Models for Detection and Prediction of Lost Circulation Events: A Review
...Show More Authors

Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Oct 22 2023
Journal Name
Iraqi Journal Of Science
Brain Tumor Detection of Skull Stripped MR Images Utilizing Clustering and Region Growing
...Show More Authors

Brain tissues segmentation is usually concerned with the delineation of three types of brain matters Grey Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). Because most brain structures are anatomically defined by boundaries of these tissue classes, accurate segmentation of brain tissues into one of these categories is an important step in quantitative morphological study of the brain. As well as the abnormalities regions like tumors are needed to be delineated. The extra-cortical voxels in MR brain images are often removed in order to facilitate accurate analysis of cortical structures. Brain extraction is necessary to avoid the misclassifications of surrounding tissues, skull and scalp as WM, GM or tumor when implementing s

... Show More
View Publication Preview PDF
Publication Date
Wed Oct 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fully Automated Magnetic Resonance Detection and Segmentation of Brain using Convolutional Neural Network
...Show More Authors

     The brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Journal Of Engineering
Efficient Intrusion Detection Through the Fusion of AI Algorithms and Feature Selection Methods
...Show More Authors

With the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Iraqi Journal Of Science
Detection and Discrimination for Shadow of High Resolution Satellite Images by Spatial Filter
...Show More Authors

This paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t

... Show More
View Publication Preview PDF
Publication Date
Sun Jun 06 2010
Journal Name
Baghdad Science Journal
New Method for the Determination of DL-Histidine by FIA and Chemiluminometric Detection
...Show More Authors

This paper present a simple and sensitive method for the determination of DL-Histidine using FIA-Chemiluminometric measurement resulted from oxidation of luminol molecule by hydrogen peroxide in alkaline medium in the presence of DL-Histidine. Using 70?l. sample linear plot with a coefficient of determination 95.79% for (5-60) mmol.L-1 while for a quadratic relation C.O.D = 96.44% for (5-80) mmol.L-1 and found that guadratic plot in more representative. Limit of detection was 31.93 ?g DL-Histidine (S/N = 3), repeatability of measurement was less that 5% (n=6). Positive and negative ion interferances was removed by using minicolume containing ion exchange resin located after injection valve position.

View Publication Preview PDF
Crossref