Since the appearance of COVID-19 disease as an epidemic and pandemic disease, many studies are performed to uncover the genetic nature of the newly discovered coronavirus with unique clinical features. The last three human coronavirus outbreaks, SARS-CoV, MERS-CoV and SARS-CoV-2 are caused by Beta-Coronaviruses. Horizontal genetic materials transfer was proven from one coronavirus to the other coronavirus of non-human origin like infectious bronchitis virus (IBV) of avian. Horizontal genetic materials transfer was also from non-corona viruses like astroviruses and equine rhinovirus (ERV-2) or from coronavirus-unrelated viruses, like influenza virus type C. However, SARS-CoV-2 is identical to SARS-CoV and MERS-CoV. Interestingly, Wuhan city-SARS-CoV-2 is very similar to two types of bats Coronavirus in RdRp nucleotide sequence to RdRp of SARS-CoV-2 suggesting possible transmission from bats. Moreover, many genomic mutations are found in SARS-CoV-2 genomes suggesting the mutations are developed and the virus is constantly changed. The newly discovered SARS-CoV-2 has a new open reading frame (ORF) that encodes for thirty-eight amino acid peptide chains and has no similar sequence in all reported NCBI data regarding respiratory viruses. The short peptide can serve as an identification target for SARS-CoV-2 detection.
Understanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the
... Show MoreFire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20
Continuous escalation of the cost of generating energy is preceded by the fact of scary depletion of the energy reserve of the fossil fuels and pollution of the environment as developed and developing countries burn these fuels. To meet the challenge of the impending energy crisis, renewable energy has been growing rapidly in the last decade. Among the renewable energy sources, solar energy is the most extensively available energy, has the least effect on the environment, and is very efficient in terms of energy conversion. Thus, solar energy has become one of the preferred sources of renewable energy. Flat-plate solar collectors are one of the extensively-used and well-known types of solar collectors. However, the effectiveness of the coll
... Show MoreMicro-perforated panel (MPP) absorber is increasingly gaining popularity as an alternative sound absorber in buildings compared to the well-known synthetic porous materials. A single MPP has a typical feature of a Helmholtz resonator with a high amplitude of absorption but a narrow absorption frequency bandwidth. To improve the bandwidth, a single MPP can be cascaded with another single MPP to form a double-layer MPP. This paper proposes the introduction of inhomogeneous perforation in the double-layer MPP system (DL-iMPP) to enhance the absorption bandwidth of a double-layer MPP. Mathematical models are proposed using the equivalent electrical circuit model and are validated with experiments with good agreement. It is revealed that the DL-
... Show MoreReliable estimation of critical parameters such as hydrocarbon pore volume, water saturation, and recovery factor are essential for accurate reserve assessment. The inherent uncertainties associated with these parameters encompass a reasonable range of estimated recoverable volumes for single accumulations or projects. Incorporating this uncertainty range allows for a comprehensive understanding of potential outcomes and associated risks. In this study, we focus on the oil field located in the northern part of Iraq and employ a Monte Carlo based petrophysical uncertainty modeling approach. This method systematically considers various sources of error and utilizes effective interpretation techniques. Leveraging the current state of a
... Show MoreThe Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show More