Technological advances have yielded new molecular biology-based methods for the diagnosis of infectious diseases. The newest and most powerful molecular diagnostic tests are available at regional and national reference laboratories, as well as at specialized centers that are certified to conduct metagenomic testing. Metagenomic assays utilize advances in DNA extraction technology, DNA sequence library construction, high throughput DNA sequencing and automated data analysis to identify millions of individual strands of DNA extracted from clinical samples. At present, metagenomic assays are only possible at a small number of special research, academic and commercial laboratories. Continued research in human and pathogen genomic organization and host-pathogen interactions, represent important future goals that will maximize the information obtained from metagenomic assays. To illustrate the power and limitations of metagenomics, we report on a previously healthy 27 year old woman with work related exposure to ill animals, and who developed a rapidly progressive, severe diffuse interstitial pneumonitis that ultimately ended in the need for a double lung transplant. Metagenomic testing on DNA extracted from pleural fluid and nasopharyngeal swabs demonstrated the presence of expected normal bacterial flora along with some unexpected herpesvirus and non-HIV retroviral elements integrated into the patients DNA. Although no specific pathogen was ultimately identified to explain this patient’s severe disease, the sample preparation and data analysis methods detailed herein illustrate the powerful benefits and limitations of metagenomic testing.
Multiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreBackground: Malnutrition during human growth affects the size of the tissues at different stages of life, body proportions, body chemistry, as well as quality and texture of tissues. Teeth are particularly sensitive to malnutrition. Malnutrition may affect odontometric measurement involving tooth size dimensions. The aim of this study was to estimate the effect of nutrition on teeth size dimension measurements among students aged 15 years old. Materials and methods: This study was conducted among malnourished group in comparison to well-nourished group matching with age and gender. The present study included 167 students aged 15 years (83 malnourished and 84 well-nourished). The assessment of nutritional status was done by using body mass
... Show MoreBackground Fibroblast growth factor receptor 2 (FGFR2) and trinucleotide repeat-containing 9 (TNRC9) gene polymorphisms have been associated with some cancers. We aimed to assess the association of FGFR2 rs2981582 and TNRC9 rs12443621 polymorphisms with hepatocellular cancer risk. Methods One hundred patients with HCV-induced HCC, 100 patients with chronic HCV infection, and 100 controls were genotyped for FGFR2 rs2981582 and TNRC9 rs12443621 using allele-specific Real-Time PCR analysis. Results FGFR2 rs2981582 genotype TT was associated with increased risk of HCC when compared to controls (OR = 3.09, 95% CI = 1.24–7.68). However, it was significantly associated with a lower risk of HCC when using HCV patients as controls (OR =
... Show MoreThe paper is devoted to solve nth order linear delay integro-differential equations of convolution type (DIDE's-CT) using collocation method with the aid of B-spline functions. A new algorithm with the aid of Matlab language is derived to treat numerically three types (retarded, neutral and mixed) of nth order linear DIDE's-CT using B-spline functions and Weddle rule for calculating the required integrals for these equations. Comparison between approximated and exact results has been given in test examples with suitable graphing for every example for solving three types of linear DIDE's-CT of different orders for conciliated the accuracy of the results of the proposed method.
In order to advance the education process and raise the educational level of the players, it became necessary to introduce new educational aids, programmed education in the education process, through which the basic skills to be learned are explained and clarified, and immediate feedback is provided that would enhance the information of the learner, and Reaching the goal to be achieved, taking into account the individual differences between the players, and thus it is possible to move away from the educational methods used in learning skills, which requires great effort and time, in addition to that the open playground may not perform the skill accurately and the player looks from one side, while when using the computer you look from severa
... Show MoreThe essay discusses how different environmental factors affect plant growth by explaining how each factor affects the physiological processes within the plant. The essay begins by explaining the effect of temperature on plant growth, as high or low temperatures can significantly affect the rate of photosynthesis and lead to a reduction in water and nutrient absorption. It also discusses the light intensity impacting plants because the more appropriate the light intensity is, the more enhanced the plant's photosynthesis ability, and in the excess or insufficient light condition, the growth can be inhibited. Additionally, the article outlines the effect of water shortage on the plant because this leads to the closure of stomata to avoid water
... Show MoreThe 3D electro-Fenton technique is, due to its high efficiency, one of the technologies suggested to eliminate organic pollutants in wastewater. The type of particle electrode used in the 3D electro-Fenton process is one of the most crucial variables because of its effect on the formation of reactive species and the source of iron ions. The electrolytic cell in the current study consisted of graphite as an anode, carbon fiber (CF) modified with graphene as a cathode, and iron foam particles as a third electrode. A response surface methodology (RSM) approach was used to optimize the 3D electro-Fenton process. The RSM results revealed that the quadratic model has a high R2 of 99.05 %. At 4 g L-1 iron foam particles, time of 5 h, and
... Show More