Preferred Language
Articles
/
jkmc-788
Detection of Parvovirus B19 DNA in pregnant Sudanese women attending The Military hospital using Nested PCR technique : Detection of Parvovirus B19 DNA in pregnant Sudanese women
...Show More Authors

Background: Parvovirus B19 is a human pathogenic virus associated with a wide range of clinical conditions. During pregnancy congenital infection with parvovirus B19 can be associated with poor outcome, including miscarriage, fetal anemia and non-immune hydrops.  

Objective: The study aimed to determine the prevalenceof Parvovirus B19 DNA in pregnant women attending the Military hospital in Khartoum, demonstrating the association between the virus and poor pregnancy outcomes.

Subjects and methods: This study was a cross sectional study, testing pregnant Sudanese women whole blood samples (n= 97) for the presence of Parvovirus B19 DNA using nested PCR technique.

Result: Two samples were found positive for Parvovirus B19 DNA out of the total number of samples screened.

Conclusions: The prevalence of Parvovirus B19 DNA among pregnant women attending the Military hospital was 2.1%.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Construct an efficient distributed denial of service attack detection system based on data mining techniques
...Show More Authors

<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Early detection of breast cancer mass lesions by mammogram segmentation images based on texture features
...Show More Authors

Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extracti

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Inorganic Chemistry Communications
Detection of nitrotyrosine (Alzheimer's agent) by B24N24 nano cluster: A comparative DFT and QTAIM insight
...Show More Authors

A nano-sensor for nitrotyrosine (NT) molecule was found by studying the interactions of NT molecule with new B24N24 nanocages. It was calculated using density functionals in this case. The predicted adsorption mechanisms included physical and chemical adsorption with the adsorption energy of −2.76 to −4.60 and −11.28 to −15.65 kcal mol−1, respectively. The findings show that an NT molecule greatly increases the electrical conductivity of a nanocage by creating electronic noise. Moreover, NT adsorption in the most stable complexes significantly affects the Fermi level and the work function. This means the B24N24 nanocage can detect NT as a Φ–type sensor. The recovery time was determined to be 0.3 s. The sensitivity of pure BN na

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Wed May 04 2022
Journal Name
Int. J. Nonlinear Anal. Appl.
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when

... Show More
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
A Magnetic Field Concentration Method for Magnetic Flux Leakage Detection of Rail-Top Surface Cracks
...Show More Authors

View Publication
Scopus (9)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Journal Of Engineering
Identificatio n Of Key Factors Affecting Waste Management In Life Cycle Of The Construction Project By Using Delphi Technique
...Show More Authors

The problem of generated waste as a result of the implementation of construction projects, has  been aggravated recently because of construction activity experienced by the world, especially Iraq, which is going through a period of reconstruction, where construction waste represents (20-40%) of the total generated waste and has a negative effect on the environment and economic side of the project. In addition, the rate of consumpted  amounts of natural resources are estimated to be about 40% in the construction industry, so it became necessary to reduce waste and to be manage well. This study aims to identify the key factors affecting waste management through the various phases of the project, and this is accom

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Biochemical Cellular Archive
Immunological and molecular detection of herpes simplex virus type 1 and 2 in patients clinically diagnosed with parkinson’s disease and multiple sclerosis
...Show More Authors

To determine the relationship between herpes simplex virus 1, 2 and neurological disorders, sixty samples from patients with neurological diseases were collected (40 patients with Multiple sclerosis and 20 patients with Parkinson’s disease) all of whom attended both the Neurological science Hospital as well as the Neuropathology consultation Department in Baghdad Hospital In Iraq. The samples were collected in the time frame between November 2017 and April 2018. The ages of the patients that were investigated were between (17-76) years and compared to a control group consisting of 25 samples collected from apparently healthy individuals. All the studied groups were subjected to the measurement of anti-HSV 1, 2 IgG antibodies by the means

... Show More
Publication Date
Fri Apr 12 2019
Journal Name
Journal Of Economics And Administrative Sciences
The robust estimators of reliability function using sample technique AM & POT
...Show More Authors

Abstract 

The Phenomenon of Extremism of Values ​​(Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were

... Show More
View Publication Preview PDF
Crossref