Background: Cytology is one of the important diagnostic tests done on effusion fluid. It can detect malignant cells in up to 60% of malignant cases. The most important benign cell present in these effusions is the mesothelial cell. Mesothelial atypia can be striking andmay simulate metastatic carcinoma. Many clinical conditions may produce such a reactive atypical cells as in anemia,SLE, liver cirrhosis and many other conditions. Recently many studies showed the value of computerized image analysis in differentiating atypical cells from malignant adenocarcinoma cells in effusion smears. Other studies support the reliability of the quantitative analysisand morphometric features and proved that they are objective prognostic indices. Methods: Sixty three cases of pleural and peritoneal smears, previously reported as benign (19) cases, malignant (21) cases or atypical (23) cases, were retrieved from the files. In each of these smears; nuclear area, perimeter, and roundness coefficient of 80-100 cell were determined at x400 magnification by the use of image analysis system. Statistical analysis was performed using analysis of variance and Tukey's HSD test. Results: The mean values of nuclear roundness, nuclear perimeter and nuclear area vary between the three groups (benign, atypical and malignant cells) by using analysis of variance (p > 0.01). The value of nuclear roundness, perimeter and area did not differ significantly between benign and atypical cells (Tukey’s test: p<0.01). On the other hand, the value of nuclear roundness, perimeter and area showed a significant difference between malignant and atypical cells(Tukey's test: p> 0.01). Conclusion: In conclusion, our data suggest that cytomorphometry performed on effusion smear cells may provide important information for the differentiation of atypical cells from malignant cells, in which the values of atypical cells are closer to those of benign cells during the examination of pleural and peritoneal smears by the use of image analysis system
The current study focuses on utilizing artificial intelligence (AI) techniques to identify the optimal locations of production wells and types for achieving the production company’s primary objective, which is to increase oil production from the Sa’di carbonate reservoir of the Halfaya oil field in southeast Iraq, with the determination of the optimal scenario of various designs for production wells, which include vertical, horizontal, multi-horizontal, and fishbone lateral wells, for all reservoir production layers. Artificial neural network tool was used to identify the optimal locations for obtaining the highest production from the reservoir layers and the optimal well type. Fo
The present work reports on the performance of three types of nanofiltration membranes in the removal of highly polluting and toxic lead (Pb2+) and cadmium (Cd2+) from single and binary salt aqueous solutions simulating real wastewaters. The effect of the operating variables (pH (5.5-6.5), types of NF membrane and initial ions concentration (10-250 ppm)) on the separation process and water flux was investigated. It was observed that the rejection efficiency increased with increasing pH of solution and decreasing the initial metal ions concentrations. While the flux decreased with increasing pH of solution and increasing initial metal ions concentrations. The maximum rejection of lead and cadmium ion
... Show MoreThe Neutron Fermi Age, t, and the neutron slowing down density, q (r, t) , have been measured for some materials such as Graphite and Iron by using gamma spectrometry system UCS-30 with NaI (Tl) detector. This technique was applied for Graphite and Iron materials by using Indium foils covered by Cadmium and the measurements done at the Indium resonance of 1.46 eV. These materials are exposed to a plane 241Am/Be neutron source with recent activity 38 mCi. The measurements of the Fermi Age were found to be t = 297 ± 21 cm2 for Graphite, t = 400 ± 28 cm2 for Iron. Neutron slowing down density was also calculated depending on the recent experimental t value and distance.
Atomic Force Microscope is an efficient tool to study the topography of precipitate. A study using Continuous Flow Injection via the use of Ayah 6SX1-T-2D Solar cell CFI Analyser . It was found that Cyproheptadine –HCl form precipitates of different quality using a precipitating agent's potassium hexacyanoferrate (III) and sodium nitroprusside. The formed precipitates are collected as they are formed in the usual sequence of forming the precipitate via the continuous flow .The precipitates are collected and dried under normal atmospheric pressure. The precipitates are subjected to atomic force microscope scanning to study the variation and differences of these precipitates relating them to the kind of response to both precipitates give
... Show MoreBackground: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc
... Show MoreThe cathodic deposition of zinc from simulated chloride wastewater was used to characterize the mass transport properties of a flow-by fixed bed electrochemical reactor composed of vertical stack of stainless steel nets, operated in batch-recycle mode. The electrochemical reactor employed potential value in such a way that the zinc reduction occurred under mass transport control. This potential was determined by hydrodynamic voltammetry using a borate/chloride solution as supporting electrolyte on stainless steel rotating disc electrode. The results indicate that mass transfer coefficient (Km) increases with increasing of flow rate (Q) where .The electrochemical reactor proved to be efficient in removing zinc and was abl
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
This effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, baux
... Show MoreThe present study explores the solar-induced photocatalytic degradation of reactive red (RR) and reactive turquoise (RT) dyes in a single system using TiO2 immobilized in xanthan gum (TiO2/XG), synthesized using the sol–gel dip-coating technique for direct precipitation. SEM-EDX, XRD, FTIR, and UV–Vis were used to assess the characteristics of the resulting catalyst. Moreover, the effects of different operating parameters, specifically pH, dye concentration, TiO2/XG concentration, H2O2 concentration, and contact time, were also investigated in a batch photocatalytic reactor. The immobilized TiO2/XG catalyst showed a slight adsorption degradation efficiency and then improved the RR and RT dye degradation activity (92.5 and 90.8%
... Show More